Assignment Problems In Parallel And Distributed Computing

Download Assignment Problems In Parallel And Distributed Computing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Assignment Problems In Parallel And Distributed Computing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Assignment Problems in Parallel and Distributed Computing

Author: Shahid H. Bokhari
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book has been written for practitioners, researchers and stu dents in the fields of parallel and distributed computing. Its objective is to provide detailed coverage of the applications of graph theoretic tech niques to the problems of matching resources and requirements in multi ple computer systems. There has been considerable research in this area over the last decade and intense work continues even as this is being written. For the practitioner, this book serves as a rich source of solution techniques for problems that are routinely encountered in the real world. Algorithms are presented in sufficient detail to permit easy implementa tion; background material and fundamental concepts are covered in full. The researcher will find a clear exposition of graph theoretic tech niques applied to parallel and distributed computing. Research results are covered and many hitherto unpublished spanning the last decade results by the author are included. There are many unsolved problems in this field-it is hoped that this book will stimulate further research.
The Quadratic Assignment Problem

Author: E. Cela
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-14
The quadratic assignment problem (QAP) was introduced in 1957 by Koopmans and Beckmann to model a plant location problem. Since then the QAP has been object of numerous investigations by mathematicians, computers scientists, ope- tions researchers and practitioners. Nowadays the QAP is widely considered as a classical combinatorial optimization problem which is (still) attractive from many points of view. In our opinion there are at last three main reasons which make the QAP a popular problem in combinatorial optimization. First, the number of re- life problems which are mathematically modeled by QAPs has been continuously increasing and the variety of the fields they belong to is astonishing. To recall just a restricted number among the applications of the QAP let us mention placement problems, scheduling, manufacturing, VLSI design, statistical data analysis, and parallel and distributed computing. Secondly, a number of other well known c- binatorial optimization problems can be formulated as QAPs. Typical examples are the traveling salesman problem and a large number of optimization problems in graphs such as the maximum clique problem, the graph partitioning problem and the minimum feedback arc set problem. Finally, from a computational point of view the QAP is a very difficult problem. The QAP is not only NP-hard and - hard to approximate, but it is also practically intractable: it is generally considered as impossible to solve (to optimality) QAP instances of size larger than 20 within reasonable time limits.
Parallel and Distributed Computation: Numerical Methods

Author: Dimitri Bertsekas
language: en
Publisher: Athena Scientific
Release Date: 2015-03-01
This highly acclaimed work, first published by Prentice Hall in 1989, is a comprehensive and theoretically sound treatment of parallel and distributed numerical methods. It focuses on algorithms that are naturally suited for massive parallelization, and it explores the fundamental convergence, rate of convergence, communication, and synchronization issues associated with such algorithms. This is an extensive book, which aside from its focus on parallel and distributed algorithms, contains a wealth of material on a broad variety of computation and optimization topics. It is an excellent supplement to several of our other books, including Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 1999), Dynamic Programming and Optimal Control (Athena Scientific, 2012), Neuro-Dynamic Programming (Athena Scientific, 1996), and Network Optimization (Athena Scientific, 1998). The on-line edition of the book contains a 95-page solutions manual.