Artificial Neural Networks And Machine Learning Icann 2016

Download Artificial Neural Networks And Machine Learning Icann 2016 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Neural Networks And Machine Learning Icann 2016 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Artificial Neural Networks and Machine Learning – ICANN 2016

The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.
Artificial Neural Networks and Machine Learning – ICANN 2016

The two volume set, LNCS 9886 + 9887, constitutes the proceedings of the 25th International Conference on Artificial Neural Networks, ICANN 2016, held in Barcelona, Spain, in September 2016. The 121 full papers included in this volume were carefully reviewed and selected from 227 submissions. They were organized in topical sections named: from neurons to networks; networks and dynamics; higher nervous functions; neuronal hardware; learning foundations; deep learning; classifications and forecasting; and recognition and navigation. There are 47 short paper abstracts that are included in the back matter of the volume.
Explanatory Model Analysis

Explanatory Model Analysis Explore, Explain and Examine Predictive Models is a set of methods and tools designed to build better predictive models and to monitor their behaviour in a changing environment. Today, the true bottleneck in predictive modelling is neither the lack of data, nor the lack of computational power, nor inadequate algorithms, nor the lack of flexible models. It is the lack of tools for model exploration (extraction of relationships learned by the model), model explanation (understanding the key factors influencing model decisions) and model examination (identification of model weaknesses and evaluation of model's performance). This book presents a collection of model agnostic methods that may be used for any black-box model together with real-world applications to classification and regression problems.