Artificial Intelligence In Healthcare Information Systems Security And Privacy Challenges

Download Artificial Intelligence In Healthcare Information Systems Security And Privacy Challenges PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence In Healthcare Information Systems Security And Privacy Challenges book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Artificial Intelligence in Healthcare Information Systems—Security and Privacy Challenges

Author: Narasimha Rao Vajjhala
language: en
Publisher: Springer Nature
Release Date: 2025-03-29
“Artificial Intelligence (AI) in Healthcare Information Systems: Security and Privacy Challenges” offers a deep dive into the integration of AI in healthcare, with a primary focus on addressing the significant security and privacy concerns that arise in this domain. The chapters in this book highlight the transformative potential of AI in diagnosing and predicting diseases, as well as its impact on fields like fetal medicine, but places special emphasis on the need for robust encryption, data protection techniques, and ethical considerations to safeguard sensitive healthcare data. The book also explores global case studies, from India to Kazakhstan, outlining the challenges and prospects of AI adoption in diverse healthcare settings. Readers will gain insights into AI's role in improving patient outcomes while navigating the complexities of data privacy and security. The book is a valuable resource for healthcare professionals, technologists, and policymakers who are focused on implementing AI-driven solutions securely and ethically in healthcare systems.
Artificial Intelligence in Healthcare

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Artificial Intelligence in Medicine

This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.