Artificial Intelligence For Iot Cookbook

Download Artificial Intelligence For Iot Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence For Iot Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Artificial Intelligence for IoT Cookbook

Author: Michael Roshak
language: en
Publisher: Packt Publishing Ltd
Release Date: 2021-03-05
Implement machine learning and deep learning techniques to perform predictive analytics on real-time IoT data Key FeaturesDiscover quick solutions to common problems that you'll face while building smart IoT applicationsImplement advanced techniques such as computer vision, NLP, and embedded machine learningBuild, maintain, and deploy machine learning systems to extract key insights from IoT dataBook Description Artificial intelligence (AI) is rapidly finding practical applications across a wide variety of industry verticals, and the Internet of Things (IoT) is one of them. Developers are looking for ways to make IoT devices smarter and to make users' lives easier. With this AI cookbook, you'll be able to implement smart analytics using IoT data to gain insights, predict outcomes, and make informed decisions, along with covering advanced AI techniques that facilitate analytics and learning in various IoT applications. Using a recipe-based approach, the book will take you through essential processes such as data collection, data analysis, modeling, statistics and monitoring, and deployment. You'll use real-life datasets from smart homes, industrial IoT, and smart devices to train and evaluate simple to complex models and make predictions using trained models. Later chapters will take you through the key challenges faced while implementing machine learning, deep learning, and other AI techniques, such as natural language processing (NLP), computer vision, and embedded machine learning for building smart IoT systems. In addition to this, you'll learn how to deploy models and improve their performance with ease. By the end of this book, you'll be able to package and deploy end-to-end AI apps and apply best practice solutions to common IoT problems. What you will learnExplore various AI techniques to build smart IoT solutions from scratchUse machine learning and deep learning techniques to build smart voice recognition and facial detection systemsGain insights into IoT data using algorithms and implement them in projectsPerform anomaly detection for time series data and other types of IoT dataImplement embedded systems learning techniques for machine learning on small devicesApply pre-trained machine learning models to an edge deviceDeploy machine learning models to web apps and mobile using TensorFlow.js and JavaWho this book is for If you're an IoT practitioner looking to incorporate AI techniques to build smart IoT solutions without having to trawl through a lot of AI theory, this AI IoT book is for you. Data scientists and AI developers who want to build IoT-focused AI solutions will also find this book useful. Knowledge of the Python programming language and basic IoT concepts is required to grasp the concepts covered in this artificial intelligence book more effectively.
Hands-On Artificial Intelligence for IoT

Author: Dr. Amita Kapoor
language: en
Publisher: Packt Publishing Ltd
Release Date: 2025-05-16
Master AI and IoT integration, from fundamentals to advanced techniques, and revolutionize your approach to building intelligent, data-driven solutions across industries Key Features Leverage the power of Python libraries such as TensorFlow and Keras to work with real-time IoT data Enhance your IoT solutions with advanced AI techniques, including deep learning, optimization, and generative adversarial networks Gain practical insights through industry-specific IoT case studies in manufacturing, smart cities, and automation Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionTransform IoT devices into intelligent systems with this comprehensive guide by Amita Kapoor, Chief AI Officer at Tipz AI. Drawing on 25 years of expertise in developing intelligent systems across industries, she demonstrates how to harness the combined power of artificial intelligence and IoT technology. A pioneer in making AI and neuroscience education accessible worldwide, Amita guides you through creating smart, efficient systems that leverage the latest advances in both fields. This new edition is updated with various optimization techniques in IoT used for enhancing efficiency and performance. It introduces you to cloud platforms such as Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) for analyzing data generated using IoT devices. You’ll learn about machine learning algorithms, deep learning techniques, and practical applications in real-world IoT scenarios and advance to creating AI models that work with diverse data types, including time series, images, and audio. You’ll also harness the power of widely used Python libraries, TensorFlow and Keras, to build a variety of smart AI models. By the end of the book, you’ll emerge as a master of AI-driven IoT, armed with invaluable experience in optimizing IoT devices, boosting their performance, and integrating AI algorithms to make intelligent decisions.What you will learn Integrate AI and IoT for enhanced device intelligence Understand how to build scalable and efficient IoT systems Master both supervised and unsupervised machine learning techniques for processing IoT data Explore the full potential of deep learning in IoT applications Discover AI-driven strategies to optimize IoT system efficiency Implement real-world IoT projects that leverage AI capabilities Improve device performance and decision-making using AI algorithms Who this book is for This book is for IoT developers, engineers, and tech enthusiasts, particularly those with a background in Python, looking to integrate artificial intelligence and machine learning into IoT systems. Python developers eager to apply their knowledge in new, innovative ways will find it useful. It’s also an invaluable guide for anyone with a foundational understanding of IoT concepts ready to take their skills to the next level and shape the future of intelligent devices.
TinyML Cookbook

Author: Gian Marco Iodice
language: en
Publisher: Packt Publishing Ltd
Release Date: 2022-04-01
Work through over 50 recipes to develop smart applications on Arduino Nano 33 BLE Sense and Raspberry Pi Pico using the power of machine learning Key Features Train and deploy ML models on Arduino Nano 33 BLE Sense and Raspberry Pi Pico Work with different ML frameworks such as TensorFlow Lite for Microcontrollers and Edge Impulse Explore cutting-edge technologies such as microTVM and Arm Ethos-U55 microNPU Book DescriptionThis book explores TinyML, a fast-growing field at the unique intersection of machine learning and embedded systems to make AI ubiquitous with extremely low-powered devices such as microcontrollers. The TinyML Cookbook starts with a practical introduction to this multidisciplinary field to get you up to speed with some of the fundamentals for deploying intelligent applications on Arduino Nano 33 BLE Sense and Raspberry Pi Pico. As you progress, you’ll tackle various problems that you may encounter while prototyping microcontrollers, such as controlling the LED state with GPIO and a push-button, supplying power to microcontrollers with batteries, and more. Next, you’ll cover recipes relating to temperature, humidity, and the three “V” sensors (Voice, Vision, and Vibration) to gain the necessary skills to implement end-to-end smart applications in different scenarios. Later, you’ll learn best practices for building tiny models for memory-constrained microcontrollers. Finally, you’ll explore two of the most recent technologies, microTVM and microNPU that will help you step up your TinyML game. By the end of this book, you’ll be well-versed with best practices and machine learning frameworks to develop ML apps easily on microcontrollers and have a clear understanding of the key aspects to consider during the development phase.What you will learn Understand the relevant microcontroller programming fundamentals Work with real-world sensors such as the microphone, camera, and accelerometer Run on-device machine learning with TensorFlow Lite for Microcontrollers Implement an app that responds to human voice with Edge Impulse Leverage transfer learning to classify indoor rooms with Arduino Nano 33 BLE Sense Create a gesture-recognition app with Raspberry Pi Pico Design a CIFAR-10 model for memory-constrained microcontrollers Run an image classifier on a virtual Arm Ethos-U55 microNPU with microTVM Who this book is for This book is for machine learning developers/engineers interested in developing machine learning applications on microcontrollers through practical examples quickly. Basic familiarity with C/C++, the Python programming language, and the command-line interface (CLI) is required. However, no prior knowledge of microcontrollers is necessary.