Arnold Diffusion For Smooth Convex Systems Of Two And A Half Degrees Of Freedom

Download Arnold Diffusion For Smooth Convex Systems Of Two And A Half Degrees Of Freedom PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Arnold Diffusion For Smooth Convex Systems Of Two And A Half Degrees Of Freedom book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Arnold Diffusion for Smooth Systems of Two and a Half Degrees of Freedom

Author: Vadim Kaloshin
language: en
Publisher: Princeton University Press
Release Date: 2020-11-03
The first complete proof of Arnold diffusion—one of the most important problems in dynamical systems and mathematical physics Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. In this groundbreaking book, Vadim Kaloshin and Ke Zhang provide the first complete proof of Arnold diffusion, demonstrating that that there is topological instability for typical perturbations of five-dimensional integrable systems (two and a half degrees of freedom). This proof realizes a plan John Mather announced in 2003 but was unable to complete before his death. Kaloshin and Zhang follow Mather's strategy but emphasize a more Hamiltonian approach, tying together normal forms theory, hyperbolic theory, Mather theory, and weak KAM theory. Offering a complete, clean, and modern explanation of the steps involved in the proof, and a clear account of background material, this book is designed to be accessible to students as well as researchers. The result is a critical contribution to mathematical physics and dynamical systems, especially Hamiltonian systems.
Hamiltonian Systems

Author: Albert Fathi
language: en
Publisher: Cambridge University Press
Release Date: 2024-05-31
A selection of results, spanning a broad spectrum of disciplines, from the MSRI program on Hamiltonian Systems during Fall 2018.