Architecture And Principles Of Systems Engineering


Download Architecture And Principles Of Systems Engineering PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Architecture And Principles Of Systems Engineering book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Architecture and Principles of Systems Engineering


Architecture and Principles of Systems Engineering

Author: Charles Dickerson

language: en

Publisher: CRC Press

Release Date: 2016-04-19


DOWNLOAD





The rapid evolution of technical capabilities in the systems engineering (SE) community requires constant clarification of how to answer the following questions: What is Systems Architecture? How does it relate to Systems Engineering? What is the role of a Systems Architect? How should Systems Architecture be practiced?A perpetual reassessment of c

Essential Architecture and Principles of Systems Engineering


Essential Architecture and Principles of Systems Engineering

Author: Charles Dickerson

language: en

Publisher: CRC Press

Release Date: 2021-09-28


DOWNLOAD





This book is for everyone interested in systems and the modern practice of engineering. The revolution in engineering and systems that has occurred over the past decade has led to an expansive advancement of systems engineering tools and languages. A new age of information-intensive complex systems has arrived with new challenges in a global business market. Science and information technology must now converge into a cohesive multidisciplinary approach to the engineering of systems if products and services are to be useful and competitive. For the non-specialist and even for practicing engineers, the subject of systems engineering remains cloaked in jargon and a sense of mystery. This need not be the case for any reader of this book and for students no matter what their background is. The concepts of architecture and systems engineering put forth are simple and intuitive. Readers and students of engineering will be guided to an understanding of the fundamental principles of architecture and systems and how to put them into engineering practice. This book offers a practical perspective that is reflected in case studies of real-world systems that are motivated by tutorial examples. The book embodies a decade of research and very successful academic instruction to postgraduate students that include practicing engineers. The material has been continuously improved and evolved from its basis in defence and aerospace towards the engineering of commercial systems with an emphasis on speed and efficiency. Most recently, the concepts, processes, and methods in this book have been applied to the commercialisation of wireless charging for electric vehicles. As a postgraduate or professional development course of study, this book will lead you into the modern practice of engineering in the twenty-first century. Much more than a textbook, though, Essential Architecture and Principles of Systems Engineering challenges readers and students alike to think about the world differently while providing them a useful reference book with practical insights for exploiting the power of architecture and systems.

Process for System Architecture and Requirements Engineering


Process for System Architecture and Requirements Engineering

Author: Derek Hatley

language: en

Publisher: Addison-Wesley

Release Date: 2013-08-02


DOWNLOAD





This is the digital version of the printed book (Copyright © 2000). Derek Hatley and Imtiaz Pirbhai—authors of Strategies for Real-Time System Specification—join with influential consultant Peter Hruschka to present a much anticipated update to their widely implemented Hatley/Pirbhai methods. Process for System Architecture and Requirements Engineering introduces a new approach that is particularly useful for multidisciplinary system development: It applies equally well to all technologies and thereby provides a common language for developers in widely differing disciplines. The Hatley-Pirbhai-Hruschka approach (H/H/P) has another important feature: the coexistence of the requirements and architecture methods and of the corresponding models they produce. These two models are kept separate, but the approach fully records their ongoing and changing interrelationships. This feature is missing from virtually all other system and software development methods and from CASE tools that only automate the requirements model. System managers, system architects, system engineers, and managers and engineers in all of the diverse engineering technologies will benefit from this comprehensive, pragmatic text. In addition to its models of requirements and architecture and of the development process itself, the book uses in-depth case studies of a hospital monitoring system and of a multidisciplinary groundwater analysis system to illustrate the principles. Compatibility Between the H/H/P Methods and the UML: The Hatley/Pirbhai architecture and requirements methods—described in Strategies for Real-Time System Specification—have been widely used for almost two decades in system and software development. Now known as the Hatley/Hruschka/Pirbhai (H/H/P) methods, they have always been compatible with object-oriented software techniques, such as the UML, by defining architectural elements as classes, objects, messages, inheritance relationships, and so on. In Process for System Architecture and Requirements Engineering, that compatibility is made more specific through the addition of message diagrams, inheritance diagrams, and new notations that go with them. In addition, state charts, while never excluded, are now specifically included as a representation of sequential machines. These additions make definition of the system/software boundary even more straightforward, while retaining the clear separation of requirements and design at the system levels that is a hallmark of the H/H/P methods—not shared by most OO techniques. Once the transition to software is made, the developer is free to continue using the H/H/P methods, or to use the UML or any other software-specific technique.