Approximation Theory And Harmonic Analysis On Spheres And Balls

Download Approximation Theory And Harmonic Analysis On Spheres And Balls PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximation Theory And Harmonic Analysis On Spheres And Balls book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Approximation Theory and Harmonic Analysis on Spheres and Balls

Author: Feng Dai
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
This monograph records progress in approximation theory and harmonic analysis on balls and spheres, and presents contemporary material that will be useful to analysts in this area. While the first part of the book contains mainstream material on the subject, the second and the third parts deal with more specialized topics, such as analysis in weight spaces with reflection invariant weight functions, and analysis on balls and simplexes. The last part of the book features several applications, including cubature formulas, distribution of points on the sphere, and the reconstruction algorithm in computerized tomography. This book is directed at researchers and advanced graduate students in analysis. Mathematicians who are familiar with Fourier analysis and harmonic analysis will understand many of the concepts that appear in this manuscript: spherical harmonics, the Hardy-Littlewood maximal function, the Marcinkiewicz multiplier theorem, the Riesz transform, and doubling weights are all familiar tools to researchers in this area.
Approximation Theory XIV: San Antonio 2013

These proceedings were prepared in connection with the 14th International Conference on Approximation Theory, which was held April 7-10, 2013 in San Antonio, Texas. The conference was the fourteenth in a series of meetings in Approximation Theory held at various locations in the United States. The included invited and contributed papers cover diverse areas of approximation theory with a special emphasis on the most current and active areas such as compressed sensing, isogeometric analysis, anisotropic spaces, radial basis functions and splines. Classical and abstract approximation is also included. The book will be of interest to mathematicians, engineers\ and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis and related application areas.
Spectral Methods Using Multivariate Polynomials On The Unit Ball

Spectral Methods Using Multivariate Polynomials on the Unit Ball is a research level text on a numerical method for the solution of partial differential equations. The authors introduce, illustrate with examples, and analyze 'spectral methods' that are based on multivariate polynomial approximations. The method presented is an alternative to finite element and difference methods for regions that are diffeomorphic to the unit disk, in two dimensions, and the unit ball, in three dimensions. The speed of convergence of spectral methods is usually much higher than that of finite element or finite difference methods. Features Introduces the use of multivariate polynomials for the construction and analysis of spectral methods for linear and nonlinear boundary value problems Suitable for researchers and students in numerical analysis of PDEs, along with anyone interested in applying this method to a particular physical problem One of the few texts to address this area using multivariate orthogonal polynomials, rather than tensor products of univariate polynomials.