Approximation Methods And Analytical Modeling Using Partial Differential Equations


Download Approximation Methods And Analytical Modeling Using Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximation Methods And Analytical Modeling Using Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Approximation Methods and Analytical Modeling Using Partial Differential Equations


Approximation Methods and Analytical Modeling Using Partial Differential Equations

Author: Tamara Fastovska

language: en

Publisher: Frontiers Media SA

Release Date: 2025-03-28


DOWNLOAD





Adequate mathematical modeling is the key to success for many real-world projects in engineering, medicine, and other applied areas. As soon as an appropriate mathematical model is developed, it can be comprehensively analyzed by a broad spectrum of available mathematical methods. For example, compartmental models are widely used in mathematical epidemiology to describe the dynamics of infectious diseases and in mathematical models of population genetics. While the existence of an optimal solution under certain condition can be often proved rigorously, this does not always mean that such a solution is easy to implement in practice. Finding a reasonable approximation can in itself be a challenging research problem. This Research Topic is devoted to modeling, analysis, and approximation problems whose solutions exploit and explore the theory of partial differential equations. It aims to highlight new analytical tools for use in the modeling of problems arising in applied sciences and practical areas. Researchers are invited to submit articles that investigate the qualitative behavior of weak solutions (removability conditions for singularities), the dependence of the local asymptotic property of these solutions on initial and boundary data, and also the existence of solutions. Contributors are particularly encouraged to focus on anisotropic models: analyzing the preconditions on the strength of the anisotropy, and comparing the analytical estimates for the growth behavior of the solutions near the singularities with the observed growth in numerical simulations. The qualitative analysis and analytical results should be confirmed by the numerically observed solution behavior.

Numerical Approximation of Partial Differential Equations


Numerical Approximation of Partial Differential Equations

Author: Alfio Quarteroni

language: en

Publisher: Springer Science & Business Media

Release Date: 2009-02-11


DOWNLOAD





Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

Mathematical and Numerical Methods for Partial Differential Equations


Mathematical and Numerical Methods for Partial Differential Equations

Author: Joël Chaskalovic

language: en

Publisher: Springer

Release Date: 2014-05-16


DOWNLOAD





This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.