Approximation And Complexity In Numerical Optimization


Download Approximation And Complexity In Numerical Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximation And Complexity In Numerical Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Approximation and Complexity in Numerical Optimization


Approximation and Complexity in Numerical Optimization

Author: Panos M. Pardalos

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-06-29


DOWNLOAD





There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuous universe through geomet ric, analytic, and algebraic techniques. Such techniques include global optimization formulations, semidefinite programming, and spectral theory. As a result new ap proximate algorithms have been discovered and many new computational approaches have been developed. Similarly, for many continuous nonconvex optimization prob lems, new approximate algorithms have been developed based on semidefinite pro gramming and new randomization techniques. On the other hand, computational complexity, originating from the interactions between computer science and numeri cal optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty. The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable. The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions. A conference on Approximation and Complexity in Numerical Optimization: Con tinuous and Discrete Problems was held during February 28 to March 2, 1999 at the Center for Applied Optimization of the University of Florida.

Complexity in Numerical Optimization


Complexity in Numerical Optimization

Author: Panos M. Pardalos

language: en

Publisher: World Scientific

Release Date: 1993


DOWNLOAD





Computational complexity, originated from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty.The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable.The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions.This book is a collection of articles on recent complexity developments in numerical optimization. The topics covered include complexity of approximation algorithms, new polynomial time algorithms for convex quadratic minimization, interior point algorithms, complexity issues regarding test generation of NP-hard problems, complexity of scheduling problems, min-max, fractional combinatorial optimization, fixed point computations and network flow problems.The collection of articles provide a broad spectrum of the direction in which research is going and help to elucidate the nature of computational complexity in optimization. The book will be a valuable source of information to faculty, students and researchers in numerical optimization and related areas.

Complexity In Numerical Optimization


Complexity In Numerical Optimization

Author: Panos M Pardalos

language: en

Publisher: World Scientific

Release Date: 1993-07-31


DOWNLOAD





Computational complexity, originated from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty.The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable.The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions.This book is a collection of articles on recent complexity developments in numerical optimization. The topics covered include complexity of approximation algorithms, new polynomial time algorithms for convex quadratic minimization, interior point algorithms, complexity issues regarding test generation of NP-hard problems, complexity of scheduling problems, min-max, fractional combinatorial optimization, fixed point computations and network flow problems.The collection of articles provide a broad spectrum of the direction in which research is going and help to elucidate the nature of computational complexity in optimization. The book will be a valuable source of information to faculty, students and researchers in numerical optimization and related areas.