Approximation Algorithms For Complex Systems


Download Approximation Algorithms For Complex Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximation Algorithms For Complex Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Approximation Algorithms for Complex Systems


Approximation Algorithms for Complex Systems

Author: Emmanuil H Georgoulis

language: en

Publisher: Springer Science & Business Media

Release Date: 2011-01-04


DOWNLOAD





This book collects up-to-date papers from world experts in a broad variety of relevant applications of approximation theory, including dynamical systems, multiscale modelling of fluid flow, metrology, and geometric modelling to mention a few. The 14 papers in this volume document modern trends in approximation through recent theoretical developments, important computational aspects and multidisciplinary applications. The book is arranged in seven invited surveys, followed by seven contributed research papers. The surveys of the first seven chapters are addressing the following relevant topics: emergent behaviour in large electrical networks, algorithms for multivariate piecewise constant approximation, anisotropic triangulation methods in adaptive image approximation, form assessment in coordinate metrology, discontinuous Galerkin methods for linear problems, a numerical analyst's view of the lattice Boltzmann method, approximation of probability measures on manifolds. Moreover, the diverse contributed papers of the remaining seven chapters reflect recent developments in approximation theory, approximation practice and their applications. Graduate students who wish to discover the state of the art in a number of important directions of approximation algorithms will find this a valuable volume. Established researchers from statisticians through to fluid modellers will find interesting new approaches to solving familiar but challenging problems. This book grew out of the sixth in the conference series on "Algorithms for Approximation", which took place from 31st August to September 4th 2009 in Ambleside in the Lake District of the United Kingdom.

Optimization of Complex Systems: Theory, Models, Algorithms and Applications


Optimization of Complex Systems: Theory, Models, Algorithms and Applications

Author: Hoai An Le Thi

language: en

Publisher: Springer

Release Date: 2019-06-15


DOWNLOAD





This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.

Inductive Learning Algorithms for Complex Systems Modeling


Inductive Learning Algorithms for Complex Systems Modeling

Author: H.R. Madala

language: en

Publisher: CRC Press

Release Date: 2019-08-08


DOWNLOAD





Inductive Learning Algorithms for Complex Systems Modeling is a professional monograph that surveys new types of learning algorithms for modeling complex scientific systems in science and engineering. The book features discussions of algorithm development, structure, and behavior; comprehensive coverage of all types of algorithms useful for this subject; and applications of various modeling activities (e.g., environmental systems, noise immunity, economic systems, clusterization, and neural networks). It presents recent studies on clusterization and recognition problems, and it includes listings of algorithms in FORTRAN that can be run directly on IBM-compatible PCs. Inductive Learning Algorithms for Complex Systems Modeling will be a valuable reference for graduate students, research workers, and scientists in applied mathematics, statistics, computer science, and systems science disciplines. The book will also benefit engineers and scientists from applied fields such as environmental studies, oceanographic modeling, weather forecasting, air and water pollution studies, economics, hydrology, agriculture, fisheries, and time series evaluations.