Approximate Reasoning In Intelligent Systems Decision And Control

Download Approximate Reasoning In Intelligent Systems Decision And Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximate Reasoning In Intelligent Systems Decision And Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Approximate Reasoning in Intelligent Systems, Decision and Control

Documents realistic applications of approximate reasoning techniques, with emphasis placed on operational systems. The papers presented explore new areas of practical decision-making and control systems by considering important aspects of fuzzy logic theory and the latest developments in the field of expert systems. Specific fields of application covered include modelling and control, management, planning, diagnostics, finance and software. Contains 12 papers.
Fuzzy Sets in Approximate Reasoning and Information Systems

Author: J.C. Bezdek
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Approximate reasoning is a key motivation in fuzzy sets and possibility theory. This volume provides a coherent view of this field, and its impact on database research and information retrieval. First, the semantic foundations of approximate reasoning are presented. Special emphasis is given to the representation of fuzzy rules and specialized types of approximate reasoning. Then syntactic aspects of approximate reasoning are surveyed and the algebraic underpinnings of fuzzy consequence relations are presented and explained. The second part of the book is devoted to inductive and neuro-fuzzy methods for learning fuzzy rules. It also contains new material on the application of possibility theory to data fusion. The last part of the book surveys the growing literature on fuzzy information systems. Each chapter contains extensive bibliographical material. Fuzzy Sets in Approximate Reasoning and Information Systems is a major source of information for research scholars and graduate students in computer science and artificial intelligence, interested in human information processing.
Readings in Fuzzy Sets for Intelligent Systems

Readings in Fuzzy Sets for Intelligent Systems is a collection of readings that explore the main facets of fuzzy sets and possibility theory and their use in intelligent systems. Basic notions in fuzzy set theory are discussed, along with fuzzy control and approximate reasoning. Uncertainty and informativeness, information processing, and membership, cognition, neural networks, and learning are also considered. Comprised of eight chapters, this book begins with a historical background on fuzzy sets and possibility theory, citing some forerunners who discussed ideas or formal definitions very close to the basic notions introduced by Lotfi Zadeh (1978). The reader is then introduced to fundamental concepts in fuzzy set theory, including symmetric summation and the setting of fuzzy logic; uncertainty and informativeness; and fuzzy control. Subsequent chapters deal with approximate reasoning; information processing; decision and management sciences; and membership, cognition, neural networks, and learning. Numerical methods for fuzzy clustering are described, and adaptive inference in fuzzy knowledge networks is analyzed. This monograph will be of interest to both students and practitioners in the fields of computer science, information science, applied mathematics, and artificial intelligence.