Approximate Dynamic Programming And Stochastic Approximation Methods For Inventory Control And Revenue Management


Download Approximate Dynamic Programming And Stochastic Approximation Methods For Inventory Control And Revenue Management PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximate Dynamic Programming And Stochastic Approximation Methods For Inventory Control And Revenue Management book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Approximate Dynamic Programming


Approximate Dynamic Programming

Author: Warren B. Powell

language: en

Publisher: John Wiley & Sons

Release Date: 2007-10-05


DOWNLOAD





A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.

Revenue Management and Pricing Analytics


Revenue Management and Pricing Analytics

Author: Guillermo Gallego

language: en

Publisher: Springer

Release Date: 2019-08-14


DOWNLOAD





“There is no strategic investment that has a higher return than investing in good pricing, and the text by Gallego and Topaloghu provides the best technical treatment of pricing strategy and tactics available.” Preston McAfee, the J. Stanley Johnson Professor, California Institute of Technology and Chief Economist and Corp VP, Microsoft. “The book by Gallego and Topaloglu provides a fresh, up-to-date and in depth treatment of revenue management and pricing. It fills an important gap as it covers not only traditional revenue management topics also new and important topics such as revenue management under customer choice as well as pricing under competition and online learning. The book can be used for different audiences that range from advanced undergraduate students to masters and PhD students. It provides an in-depth treatment covering recent state of the art topics in an interesting and innovative way. I highly recommend it." Professor Georgia Perakis, the William F. Pounds Professor of Operations Research and Operations Management at the Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts. “This book is an important and timely addition to the pricing analytics literature by two authors who have made major contributions to the field. It covers traditional revenue management as well as assortment optimization and dynamic pricing. The comprehensive treatment of choice models in each application is particularly welcome. It is mathematically rigorous but accessible to students at the advanced undergraduate or graduate levels with a rich set of exercises at the end of each chapter. This book is highly recommended for Masters or PhD level courses on the topic and is a necessity for researchers with an interest in the field.” Robert L. Phillips, Director of Pricing Research at Amazon “At last, a serious and comprehensive treatment of modern revenue management and assortment optimization integrated with choice modeling. In this book, Gallego and Topaloglu provide the underlying model derivations together with a wide range of applications and examples; all of these facets will better equip students for handling real-world problems. For mathematically inclined researchers and practitioners, it will doubtless prove to be thought-provoking and an invaluable reference.” Richard Ratliff, Research Scientist at Sabre “This book, written by two of the leading researchers in the area, brings together in one place most of the recent research on revenue management and pricing analytics. New industries (ride sharing, cloud computing, restaurants) and new developments in the airline and hotel industries make this book very timely and relevant, and will serve as a critical reference for researchers.” Professor Kalyan Talluri, the Munjal Chair in Global Business and Operations, Imperial College, London, UK.