Approche Multi Modeles A Sauts Markoviens Et Fusion Multi Capteurs Pour La Localisation D Un Robot Mobile


Download Approche Multi Modeles A Sauts Markoviens Et Fusion Multi Capteurs Pour La Localisation D Un Robot Mobile PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approche Multi Modeles A Sauts Markoviens Et Fusion Multi Capteurs Pour La Localisation D Un Robot Mobile book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Approche multi modèles à sauts markoviens et fusion multi capteurs pour la localisation d'un robot mobile


Approche multi modèles à sauts markoviens et fusion multi capteurs pour la localisation d'un robot mobile

Author: Zahir Djama

language: fr

Publisher:

Release Date: 2001


DOWNLOAD





Les techniques de fusion et de filtrage utilisées actuellement pour la localisation d’un robot mobile, présentent deux inconvénients majeurs. Le premier est lié au fait qu’aucune information fiable a priori sur l’entrée et la covariance du bruit de mesure n’est généralement disponible. Le second est lié au fait que le processus de localisation est souvent modélisé à l’aide d’un modèle unique, ce qui introduit des erreurs de modélisation qui dégradent la qualité du filtrage. Le travail présenté dans cette thèse constitue deux contributions. La première, consiste à prendre en compte l’existence de plusieurs régimes dans le processus de localisation. Ce dernier est modélisé sous la forme d’un processus hybride à sauts Markoviens, à la fois du point de vue du processus d’état et de celui d’observation. La deuxième contribution consiste d’une part, à effectuer une estimation adaptative en ligne de paramètres statistiques tels les variances des bruits d’état et d’observation et d’autre part, à assurer une gestion optimale des moyens d’observation. La fusion de données est réalisée par des filtres de Kalman adaptatifs linéaires pour les processus linéaires et étendus pour les processus non linéaires. Cette approche a été validée en simulation sur un robot équipé d’un odomètre, de deux télémètres placés perpendiculairement et d’un compas. Pour montrer son efficacité, une analyse comparative de ses performances par rapport à des approches existantes est présentée. Ainsi, les gains en précision apportés par cette approche comparativement aux filtres classiques sont de 2 en translation et de 2 en orientation.

COOPERATION MULTI-CAPTEURS APPLIQUEE A LA LOCALISATION DES ROBOTS MOBILES


COOPERATION MULTI-CAPTEURS APPLIQUEE A LA LOCALISATION DES ROBOTS MOBILES

Author: Laurent Delahoche

language: fr

Publisher:

Release Date: 1997


DOWNLOAD





LES TRAVAUX PRESENTES DANS CE MEMOIRE TRAITE DE LA LOCALISATION D'UN ROBOT MOBILE DANS UN ENVIRONNEMENT INTERIEUR NON BALISE. TROIS TYPES DE CAPTEURS SONT UTILISES POUR DETERMINER LA POSITION DU ROBOT : UN ODOMETRE, UN SYSTEME DE VISION OMNIDIRECTIONNELLE ET UN SYSTEME TELEMETRIQUE ROTATIF. L'OBJECTIF DE CETTE ETUDE EST DE PERMETTRE A UN ROBOT DE SE DEPLACER EN TOUTE SECURITE D'UNE CONFIGURATION INITIALE A UNE CONFIGURATION FINALE DANS UN ENVIRONNEMENT PARTIELLEMENT CONNU. POUR CELA DEUX APPROCHES ONT ETE UTILISEES : LA FUSION DES DONNEES PROPRIOCEPTIVES ET EXTEROCEPTIVES ET LA COOPERATION ENTRE LES CAPTEURS EXTEROCEPTIFS. DANS UN PREMIER TEMPS UNE METHODE DE LOCALISATION BASEE SUR LA FUSION DES DONNEES ODOMETRIQUES ET DES DONNEES TELEMETRIQUES A ETE DEVELOPPEE ET TESTEE. L'ESTIMATION DE LA POSITION ET DE SON INCERTITUDE ASSOCIEE EST OBTENUE PAR FILTRAGE DE KALMAN. LES AMERS UTILISES POUR CETTE APPROCHE SONT LES PAROIS DU MILIEU D'EVOLUTION. DANS UN DEUXIEME TEMPS UNE METHODE DE LOCALISATION UTILISANT LA VISION OMNIDIRECTIONNELLE ET L'ODOMETRIE A ETE ELABOREE. LES ANGLES D'AZIMUT DES DIFFERENTS AMERS VERTICAUX DE L'ENVIRONNEMENT SONT EXTRAITS DU MODELE SENSORIEL POUR CALCULER LA CONFIGURATION DU ROBOT. CONTRAIREMENT A L'APPROCHE ADOPTEE PRECEDEMMENT POUR LA FUSION DES DONNEES, LE FILTRAGE DE KALMAN ETENDU EST DANS CE CAS EMPLOYE, A CAUSE DE LA NON LINEARITE DES EQUATIONS D'OBSERVATION. FINALEMENT, DANS UN TROISIEME TEMPS, UNE STRATEGIE VISANT A FAIRE COOPERER DEUX CAPTEURS EXTEROCEPTIFS, UN TELEMETRE LASER ROTATIF ET LE SYSTEME DE VISION OMNIDIRECTIONNELLE, A ETE MISE EN OEUVRE. CETTE METHODE PERMET D'OBTENIR UNE ESTIMATION ABSOLUE DE LA CONFIGURATION DU ROBOT QUI EST D'UNE PART PRECISE ET D'AUTRE PART ROBUSTE. EN OUTRE, UN ALGORITHME PERMETTANT DE METTRE A JOUR LA CARTE DE L'ENVIRONNEMENT DU ROBOT AU COURS DE SON DEPLACEMENT A ETE ELABOREE ET TESTE. CE MODULE D'INSERTION DE BALISES NATURELLES NON REPERTORIEES, PERMET AINSI AU ROBOT DE SE LOCALISER DANS DES ZONES DE L'ENVIRONNEMENT QUI NE SONT QUE PARTIELLEMENT CONNUES. CE SYSTEME DE LOCALISATION, BASE SUR UNE APPROCHE COOPERATIVE, PERMET A UN ROBOT DE MENER A BIEN DES MISSIONS DANS UN ENVIRONNEMENT INTERIEUR NON BALISE QUI N'EST QUE PARTIELLEMENT CONNU.