Applied Topology Recent Progress For Computer Science Fuzzy Mathematics And Economics

Download Applied Topology Recent Progress For Computer Science Fuzzy Mathematics And Economics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Topology Recent Progress For Computer Science Fuzzy Mathematics And Economics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applied topology: recent progress for computer science, fuzzy mathematics and economics.

Author: Macario Vives, Sergio
language: en
Publisher: Publicacions de la Universitat Jaume I
Release Date: 2012-10-22
En las últimas décadas, la Topología se ha revelado como una poderosa herramienta para acometer diferentes problemas relacionados con un amplio espectro de ciencias aplicadas más allá de las matemáticas, como Economía, Inteligencia Artificial, Ciencias de la Computación o Sistemas Dinámicos. El presente volumen recoge las ponencias del Workshop in Applied Topology WiAT¿12, celebrado en junio de 2012 en la Universitat Jaume I, en el que participaron diferentes grupos de investigación del área de la Topología General y sus Aplicaciones.
Fractal Dimension for Fractal Structures

Author: Manuel Fernández-Martínez
language: en
Publisher: Springer
Release Date: 2019-04-23
This book provides a generalised approach to fractal dimension theory from the standpoint of asymmetric topology by employing the concept of a fractal structure. The fractal dimension is the main invariant of a fractal set, and provides useful information regarding the irregularities it presents when examined at a suitable level of detail. New theoretical models for calculating the fractal dimension of any subset with respect to a fractal structure are posed to generalise both the Hausdorff and box-counting dimensions. Some specific results for self-similar sets are also proved. Unlike classical fractal dimensions, these new models can be used with empirical applications of fractal dimension including non-Euclidean contexts. In addition, the book applies these fractal dimensions to explore long-memory in financial markets. In particular, novel results linking both fractal dimension and the Hurst exponent are provided. As such, the book provides a number of algorithms for properly calculating the self-similarity exponent of a wide range of processes, including (fractional) Brownian motion and Lévy stable processes. The algorithms also make it possible to analyse long-memory in real stocks and international indexes. This book is addressed to those researchers interested in fractal geometry, self-similarity patterns, and computational applications involving fractal dimension and Hurst exponent.