Applied Statistics And Multivariate Data Analysis For Business And Economics

Download Applied Statistics And Multivariate Data Analysis For Business And Economics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Statistics And Multivariate Data Analysis For Business And Economics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applied Statistics and Multivariate Data Analysis for Business and Economics

This comprehensive textbook equips students of economics and business, as well as industry professionals, with essential principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Through real-world business examples, it illustrates the practical use of univariate, bivariate, and multivariate statistical methods. The content spans a broad range of topics, from data collection and scaling to the presentation and fundamental univariate analysis of quantitative data, while also demonstrating advanced analytical techniques for exploring multivariate relationships. The book systematically covers all topics typically included in university-level courses on statistics and advanced applied data analysis. Beyond theoretical discussion, it offers hands-on guidance for using statistical software tools such as Excel, SPSS, Stata, and R. In this completely revised and updated second edition, new sections on logistic regression are included, along with enhanced examples and solutions using R for all covered statistical methods. This edition provides a robust resource for mastering applied statistics in both academic and professional settings.
Applied Statistics and Multivariate Data Analysis for Business and Economics

This textbook will familiarize students in economics and business, as well as practitioners, with the basic principles, techniques, and applications of applied statistics, statistical testing, and multivariate data analysis. Drawing on practical examples from the business world, it demonstrates the methods of univariate, bivariate, and multivariate statistical analysis. The textbook covers a range of topics, from data collection and scaling to the presentation and simple univariate analysis of quantitative data, while also providing advanced analytical procedures for assessing multivariate relationships. Accordingly, it addresses all topics typically covered in university courses on statistics and advanced applied data analysis. In addition, it does not limit itself to presenting applied methods, but also discusses the related use of Excel, SPSS, and Stata.
Applied Multivariate Analysis

Author: Neil H. Timm
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-06-21
Univariate statistical analysis is concerned with techniques for the analysis of a single random variable. This book is about applied multivariate analysis. It was written to p- vide students and researchers with an introduction to statistical techniques for the ana- sis of continuous quantitative measurements on several random variables simultaneously. While quantitative measurements may be obtained from any population, the material in this text is primarily concerned with techniques useful for the analysis of continuous obser- tions from multivariate normal populations with linear structure. While several multivariate methods are extensions of univariate procedures, a unique feature of multivariate data an- ysis techniques is their ability to control experimental error at an exact nominal level and to provide information on the covariance structure of the data. These features tend to enhance statistical inference, making multivariate data analysis superior to univariate analysis. While in a previous edition of my textbook on multivariate analysis, I tried to precede a multivariate method with a corresponding univariate procedure when applicable, I have not taken this approach here. Instead, it is assumed that the reader has taken basic courses in multiple linear regression, analysis of variance, and experimental design. While students may be familiar with vector spaces and matrices, important results essential to multivariate analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text.