Applied Evolutionary Algorithms For Engineers Using Python


Download Applied Evolutionary Algorithms For Engineers Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Evolutionary Algorithms For Engineers Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Applied Evolutionary Algorithms for Engineers using Python


Applied Evolutionary Algorithms for Engineers using Python

Author: Leonardo Azevedo Scardua

language: en

Publisher: CRC Press

Release Date: 2021-06-14


DOWNLOAD





Applied Evolutionary Algorithms for Engineers with Python is written for students, scientists and engineers who need to apply evolutionary algorithms to practical optimization problems. The presentation of the theoretical background is complemented with didactical Python implementations of evolutionary algorithms that researchers have recently applied to complex optimization problems. Cases of successful application of evolutionary algorithms to real-world like optimization problems are presented, together with source code that allows the reader to gain insight into the idiosyncrasies of the practical application of evolutionary algorithms. Key Features Includes detailed descriptions of evolutionary algorithm paradigms Provides didactic implementations of the algorithms in Python, a programming language that has been widely adopted by the AI community Discusses the application of evolutionary algorithms to real-world optimization problems Presents successful cases of the application of evolutionary algorithms to complex optimization problems, with auxiliary source code.

Python-Based Evolutionary Algorithms for Engineers


Python-Based Evolutionary Algorithms for Engineers

Author: Pankaj Jayaraman

language: en

Publisher: Educohack Press

Release Date: 2025-02-20


DOWNLOAD





"Python-Based Evolutionary Algorithms for Engineers" is a comprehensive guide designed to empower engineers with the knowledge and skills needed to harness the power of evolutionary algorithms in optimization tasks. We seamlessly integrate theoretical foundations with hands-on implementation, making it accessible to both beginners and seasoned practitioners. Starting with fundamental concepts, we progress to a dedicated exploration of Differential Evolution, a versatile optimization technique, with a strong emphasis on practical Python implementations. Readers will delve into the intricacies of multi-objective optimization and discover the myriad applications of evolutionary algorithms across diverse engineering domains. Our book stands out by offering a hands-on approach, allowing readers to translate theoretical concepts into practical applications using Python. We provide clear explanations and real-world examples that equip engineers to implement and adapt powerful optimization techniques. We also explore multi-objective optimization, demonstrating the versatility of evolutionary algorithms in addressing complex engineering challenges. With a strong emphasis on applicability, our book serves as a guide for both newcomers and experienced practitioners, offering a pathway to proficiently leverage evolutionary algorithms for enhanced problem-solving and innovation in engineering projects.

Introduction to Optimum Design


Introduction to Optimum Design

Author: Jasbir Singh Arora

language: en

Publisher: Elsevier

Release Date: 2023-11-15


DOWNLOAD





**2025 Textbook and Academic Authors Association (TAA) McGuffey Longevity Award Winner**Introduction to Optimum Design, Fifth Edition is the most widely used textbook in engineering optimization and optimum design courses. It is intended for use in a first course on engineering design and optimization at the undergraduate or graduate level within engineering departments of all disciplines, but primarily within mechanical, aerospace and civil engineering. The basic approach of the text presents an organized approach to engineering design optimization in a rigorous yet simplified manner, illustrating various concepts and procedures with simple examples and demonstrating their applicability to engineering design problems. Formulation of a design problem as an optimization problem is emphasized and illustrated throughout the text. Excel and MATLAB are featured as learning and teaching aids. This new edition has been enhanced with new or expanded content in such areas as reliability‐based optimization, metamodeling, design of experiments, robust design, nature-inspired metaheuristic search methods, and combinatorial optimizaton. - Describes basic concepts of optimality conditions and numerical methods with simple and practical examples, making the material highly teachable and learnable - Includes applications of optimization methods for structural, mechanical, aerospace, and industrial engineering problems - Covers practical design examples and introduces students to the use of optimization methods - Serves the needs of instructors who teach more advanced courses - Features new or expanded contents in such areas as design under uncertainty - reliability-based design optimization, metamodeling - response surface method, design of experiments, nature-inspired metaheuristic search methods, and robust design