Applied Diffusion Processes From Engineering To Finance


Download Applied Diffusion Processes From Engineering To Finance PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Diffusion Processes From Engineering To Finance book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Applied Diffusion Processes from Engineering to Finance


Applied Diffusion Processes from Engineering to Finance

Author: Jacques Janssen

language: en

Publisher: John Wiley & Sons

Release Date: 2013-04-08


DOWNLOAD





The aim of this book is to promote interaction between engineering, finance and insurance, as these three domains have many models and methods of solution in common for solving real-life problems. The authors point out the strict inter-relations that exist among the diffusion models used in engineering, finance and insurance. In each of the three fields, the basic diffusion models are presented and their strong similarities are discussed. Analytical, numerical and Monte Carlo simulation methods are explained with a view to applying them to obtain the solutions to the different problems presented in the book. Advanced topics such as nonlinear problems, Lévy processes and semi-Markov models in interactions with the diffusion models are discussed, as well as possible future interactions among engineering, finance and insurance. Contents 1. Diffusion Phenomena and Models. 2. Probabilistic Models of Diffusion Processes. 3. Solving Partial Differential Equations of Second Order. 4. Problems in Finance. 5. Basic PDE in Finance. 6. Exotic and American Options Pricing Theory. 7. Hitting Times for Diffusion Processes and Stochastic Models in Insurance. 8. Numerical Methods. 9. Advanced Topics in Engineering: Nonlinear Models. 10. Lévy Processes. 11. Advanced Topics in Insurance: Copula Models and VaR Techniques. 12. Advanced Topics in Finance: Semi-Markov Models. 13. Monte Carlo Semi-Markov Simulation Methods.

VaR Methodology for Non-Gaussian Finance


VaR Methodology for Non-Gaussian Finance

Author: Marine Habart-Corlosquet

language: en

Publisher: John Wiley & Sons

Release Date: 2013-05-06


DOWNLOAD





With the impact of the recent financial crises, more attention must be given to new models in finance rejecting “Black-Scholes-Samuelson” assumptions leading to what is called non-Gaussian finance. With the growing importance of Solvency II, Basel II and III regulatory rules for insurance companies and banks, value at risk (VaR) – one of the most popular risk indicator techniques plays a fundamental role in defining appropriate levels of equities. The aim of this book is to show how new VaR techniques can be built more appropriately for a crisis situation. VaR methodology for non-Gaussian finance looks at the importance of VaR in standard international rules for banks and insurance companies; gives the first non-Gaussian extensions of VaR and applies several basic statistical theories to extend classical results of VaR techniques such as the NP approximation, the Cornish-Fisher approximation, extreme and a Pareto distribution. Several non-Gaussian models using Copula methodology, Lévy processes along with particular attention to models with jumps such as the Merton model are presented; as are the consideration of time homogeneous and non-homogeneous Markov and semi-Markov processes and for each of these models. Contents 1. Use of Value-at-Risk (VaR) Techniques for Solvency II, Basel II and III. 2. Classical Value-at-Risk (VaR) Methods. 3. VaR Extensions from Gaussian Finance to Non-Gaussian Finance. 4. New VaR Methods of Non-Gaussian Finance. 5. Non-Gaussian Finance: Semi-Markov Models.

Applied Stochastic Processes


Applied Stochastic Processes

Author: Mario Lefebvre

language: en

Publisher: Springer Science & Business Media

Release Date: 2007-12-14


DOWNLOAD





Applied Stochastic Processes uses a distinctly applied framework to present the most important topics in the field of stochastic processes. Key features: -Presents carefully chosen topics such as Gaussian and Markovian processes, Markov chains, Poisson processes, Brownian motion, and queueing theory -Examines in detail special diffusion processes, with implications for finance, various generalizations of Poisson processes, and renewal processes -Serves graduate students in a variety of disciplines such as applied mathematics, operations research, engineering, finance, and business administration -Contains numerous examples and approximately 350 advanced problems, reinforcing both concepts and applications -Includes entertaining mini-biographies of mathematicians, giving an enriching historical context -Covers basic results in probability Two appendices with statistical tables and solutions to the even-numbered problems are included at the end. This textbook is for graduate students in applied mathematics, operations research, and engineering. Pure mathematics students interested in the applications of probability and stochastic processes and students in business administration will also find this book useful.