Applied Categorical Data Analysis


Download Applied Categorical Data Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Categorical Data Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Applied Categorical Data Analysis and Translational Research


Applied Categorical Data Analysis and Translational Research

Author: Chap T. Le

language: en

Publisher: John Wiley & Sons

Release Date: 2009-12-14


DOWNLOAD





An updated treatment of categorical data analysis in the biomedical sciences that now explores applications to translational research Thoroughly updated with the latest advances in the field, Applied Categorical Data Analysis and Translational Research, Second Edition maintains the accessible style of its predecessor while also exploring the importance of translational research as it relates to basic scientific findings within clinical practice. With its easy-to-follow style, updated coverage of major methodologies, and broadened scope of coverage, this new edition provides an accessible guide to statistical methods involving categorical data and the steps to their application in problem solving in the biomedical sciences. Delving even further into the applied direction, this update offers many real-world examples from biomedicine, epidemiology, and public health along with detailed case studies taken straight from modern research in these fields. Additional features of the Second Edition include: A new chapter on the relationship between translational research and categorical data, focusing on design study, bioassay, and Phase I and Phase II clinical trials A new chapter on categorical data and diagnostic medicine, with coverage of the diagnostic process, prevalence surveys, the ROC function and ROC curve, and important statistical considerations A revised chapter on logistic regression models featuring an updated treatment of simple and multiple regression analysis An added section on quantal bioassays Each chapter features updated and new exercise sets along with numerous graphs that demonstrate the highly visual nature of the topic. A related Web site features the book's examples as well as additional data sets that can be worked with using SAS® software. The only book of its kind to provide balanced coverage of methods for both categorical data and translational research, Applied Categorical Data Analysis and Translational Research, Second Edition is an excellent book for courses on applied statistics and biostatistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the biomedical and public health fields.

Applied categorical data analysis


Applied categorical data analysis

Author: Daniel H. Freeman

language: en

Publisher:

Release Date: 1987


DOWNLOAD





Applied Categorical and Count Data Analysis


Applied Categorical and Count Data Analysis

Author: Wan Tang

language: en

Publisher: CRC Press

Release Date: 2023-04-06


DOWNLOAD





Developed from the authors’ graduate-level biostatistics course, Applied Categorical and Count Data Analysis, Second Edition explains how to perform the statistical analysis of discrete data, including categorical and count outcomes. The authors have been teaching categorical data analysis courses at the University of Rochester and Tulane University for more than a decade. This book embodies their decade-long experience and insight in teaching and applying statistical models for categorical and count data. The authors describe the basic ideas underlying each concept, model, and approach to give readers a good grasp of the fundamentals of the methodology without relying on rigorous mathematical arguments. The second edition covers classic concepts and popular topics, such as contingency tables, logistic regression models, and Poisson regression models, along with modern areas that include models for zero-modified count outcomes, parametric and semiparametric longitudinal data analysis, reliability analysis, and methods for dealing with missing values. As in the first edition, R, SAS, SPSS, and Stata programming codes are provided for all the examples, enabling readers to immediately experiment with the data in the examples and even adapt or extend the codes to fit data from their own studies. Designed for a one-semester course for graduate and senior undergraduate students in biostatistics, this self-contained text is also suitable as a self-learning guide for biomedical and psychosocial researchers. It will help readers analyze data with discrete variables in a wide range of biomedical and psychosocial research fields. Features: Describes the basic ideas underlying each concept and model Includes R, SAS, SPSS and Stata programming codes for all the examples Features significantly expanded Chapters 4, 5, and 8 (Chapters 4-6, and 9 in the second edition Expands discussion for subtle issues in longitudinal and clustered data analysis such as time varying covariates and comparison of generalized linear mixed-effect models with GEE