Applied Calculus Of Variations For Engineers

Download Applied Calculus Of Variations For Engineers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Calculus Of Variations For Engineers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applied Calculus of Variations for Engineers

The subject of calculus of variations is to find optimal solutions to engineering problems where the optimum may be a certain quantity, a shape, or a function. Applied Calculus of Variations for Engineers addresses this very important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apa
Applied Calculus of Variations for Engineers, Second Edition

The purpose of the calculus of variations is to find optimal solutions to engineering problems whose optimum may be a certain quantity, shape, or function. Applied Calculus of Variations for Engineers addresses this important mathematical area applicable to many engineering disciplines. Its unique, application-oriented approach sets it apart from the theoretical treatises of most texts, as it is aimed at enhancing the engineer’s understanding of the topic. This Second Edition text: Contains new chapters discussing analytic solutions of variational problems and Lagrange-Hamilton equations of motion in depth Provides new sections detailing the boundary integral and finite element methods and their calculation techniques Includes enlightening new examples, such as the compression of a beam, the optimal cross section of beam under bending force, the solution of Laplace’s equation, and Poisson’s equation with various methods Applied Calculus of Variations for Engineers, Second Edition extends the collection of techniques aiding the engineer in the application of the concepts of the calculus of variations.
Applied Calculus of Variations for Engineers, Third edition

Calculus of variations has a long history. Its fundamentals were laid down by icons of mathematics like Euler and Lagrange. It was once heralded as the panacea for all engineering optimization problems by suggesting that all one needed to do was to state a variational problem, apply the appropriate Euler-Lagrange equation and solve the resulting differential equation. This, as most all encompassing solutions, turned out to be not always true and the resulting differential equations are not necessarily easy to solve. On the other hand, many of the differential equations commonly used in various fields of engineering are derived from a variational problem. Hence it is an extremely important topic justifying the new edition of this book. This third edition extends the focus of the book to academia and supports both variational calculus and mathematical modeling classes. The newly added sections, extended explanations, numerous examples and exercises aid the students in learning, the professors in teaching, and the engineers in applying variational concepts.