Applications Of Statistical Methods

Download Applications Of Statistical Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Statistical Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Statistical Methods

Statistical Methods, Third Edition, provides students with a working introduction to statistical methods offering a wide range of applications that emphasize the quantitative skills useful across many academic disciplines. This text takes a classic approach that emphasizes concepts and techniques for working out problems and intepreting results. The book includes research projects, real-world case studies, numerous examples, and data exercises organized by level of difficulty. Students are required to be familiar with algebra. This updated edition includes new exercises applying different techniques and methods; new examples and datasets using current real-world data; new text organization to create a more natural connection between regression and the Analysis of the Variance; new material on generalized linear models; new expansion of nonparametric techniques; new student research projects; and new case studies for gathering, summarizing, and analyzing data. - Integrates the classical conceptual approach with modern day computerized data manipulation and computer applications - Accessibile to students who may not have a background in probability or calculus - Offers reader-friendly exposition, without sacrificing statistical rigor - Includes many new data sets in various applied fields such as Psychology, Education, Biostatistics, Agriculture, Economics
Statistics

This - one of a kind - book offers a comprehensive, almost encyclopedic presentation of statistical methods and analytic approaches used in science, industry, business, and data mining, written from the perspective of the real-life practitioner ("consumer") of these methods.
Computational and Statistical Methods for Analysing Big Data with Applications

Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate