Applications Of Sem Automated Mineralogy

Download Applications Of Sem Automated Mineralogy PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Sem Automated Mineralogy book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applications of SEM Automated Mineralogy

During the last decade, software developments in Scanning Electron Microscopy (SEM) provoked a notable increase of applications to the study of solid matter. The mineral liberation analysis (MLA) of processed metal ores was an important drive for innovations that led to QEMSCAN, MLA and other software platforms. These combine the assessment of the backscattered electron (BSE) image to the directed steering of the electron beam for energy dispersive spectroscopy (EDS) to automated mineralogy. However, despite a wide distribution of SEM instruments in material research and industry, the potential of SEM automated mineralogy is still under-utilised. The characterisation of primary ores, and the optimisation of comminution, flotation, mineral concentration and metallurgical processes in the mining industry by generating quantified data, is still the major application field of SEM automated mineralogy. However, there is interesting potential beyond these classical fields of geometallurgy and metal ore fingerprinting. Slags, pottery and artefacts can be studied in an archeological context for the recognition of provenance and trade pathways; soil, and solid particles of all kinds, are objects in forensic science. SEM automated mineralogy allows new insight in the fields of process chemistry and recycling technology.
Applications of SEM Automated Mineralogy

During the last decade, software developments in Scanning Electron Microscopy (SEM) provoked a notable increase of applications to the study of solid matter. The mineral liberation analysis (MLA) of processed metal ores was an important drive for innovations that led to QEMSCAN, MLA and other software platforms. These combine the assessment of the backscattered electron (BSE) image to the directed steering of the electron beam for energy dispersive spectroscopy (EDS) to automated mineralogy. However, despite a wide distribution of SEM instruments in material research and industry, the potential of SEM automated mineralogy is still under-utilised. The characterisation of primary ores, and the optimisation of comminution, flotation, mineral concentration and metallurgical processes in the mining industry by generating quantified data, is still the major application field of SEM automated mineralogy. However, there is interesting potential beyond these classical fields of geometallurgy and metal ore fingerprinting. Slags, pottery and artefacts can be studied in an archeological context for the recognition of provenance and trade pathways; soil, and solid particles of all kinds, are objects in forensic science. SEM automated mineralogy allows new insight in the fields of process chemistry and recycling technology.
Criminal and Environmental Soil Forensics

Author: Karl Ritz
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-12-23
Soils have important roles to play in criminal and environmental forensic science. Since the initial concept of using soil in forensic investigations was mooted by Conan Doyle in his Sherlock Holmes stories prior to real-world applications, this branch of forensic science has become increasingly sophisticated and broad. New techniques in chemical, physical, biological, ecological and spatial analysis, coupled with informatics, are being applied to reducing areas of search by investigators, site identification, site comparison and measurement for the eventual use as evidence in court. Soils can provide intelligence, in assisting the determination of the provenance of samples from artifacts, victims or suspects, enabling their linkage to locations or other evidence. They also modulate change in surface or buried cadavers and hence affect the ability to estimate post-mortem or post-burial intervals, and locate clandestine graves. This interdisciplinary volume explores the conceptual and practical interplay of soil and geoforensics across the scientific, investigative and legal fields. Supported by reviews, case-studies from across the world, and reports of original research, it demonstrates the increasing convergence of a wide range of knowledge. It covers conceptual issues, evidence (from recovery to use in court), geoforensics, taphonomy, as well as leading-edge technologies. The application of the resultant soil forensics toolbox is leading to significant advances in improving crime detection, and environmental and national security.