Applications Of Pattern Recognition


Download Applications Of Pattern Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Pattern Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Applications of Pattern Recognition


Applications of Pattern Recognition

Author: King-Sun Fu

language: en

Publisher: CRC Press

Release Date: 2019-07-22


DOWNLOAD





This monograph is intended to cover several major applications of pattern recognition. After a brief introduction to pattern recognition in Chapter 1, the two major approaches, statistical approach and syntactic approach, are reviewed in Chapter 2, and 3, respectively. Other topics include the application of pattern recognition to seismic wave interpretation, to system reliability problems, to medical data analysis, as well as character and speech recognition.

Applications of Pattern Recognition and Image Processing to Industrial Problems in Developing Countries


Applications of Pattern Recognition and Image Processing to Industrial Problems in Developing Countries

Author: United Nations Industrial Development Organization

language: en

Publisher:

Release Date: 1986


DOWNLOAD





Pattern Recognition


Pattern Recognition

Author: Konstantinos Koutroumbas

language: en

Publisher: Academic Press

Release Date: 2008-11-26


DOWNLOAD





This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. · Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques· Many more diagrams included--now in two color--to provide greater insight through visual presentation· Matlab code of the most common methods are given at the end of each chapter.· More Matlab code is available, together with an accompanying manual, via this site · Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms.· An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869). - Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques - Many more diagrams included--now in two color--to provide greater insight through visual presentation - Matlab code of the most common methods are given at the end of each chapter - An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) - Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms - Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor