Applications Of Item Response Theory To Practical Testing Problems

Download Applications Of Item Response Theory To Practical Testing Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Item Response Theory To Practical Testing Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applications of Item Response Theory to Practical Testing Problems

First Published in 1980. Routledge is an imprint of Taylor & Francis, an informa company.
Applications of Item Response Theory To Practical Testing Problems

Published in 1980, Applications of Item Response Theory To Practical Testing Problems is a valuable contribution to the field of Education.
Using R for Item Response Theory Model Applications

Item response theory (IRT) is widely used in education and psychology and is expanding its applications to other social science areas, medical research, and business as well. Using R for Item Response Theory Model Applications is a practical guide for students, instructors, practitioners, and applied researchers who want to learn how to properly use R IRT packages to perform IRT model calibrations with their own data. This book provides practical line-by-line descriptions of how to use R IRT packages for various IRT models. The scope and coverage of the modeling in the book covers almost all models used in practice and in popular research, including: dichotomous response modeling polytomous response modeling mixed format data modeling concurrent multiple group modeling fixed item parameter calibration modelling with latent regression to include person-level covariate(s) simple structure, or between-item, multidimensional modeling cross-loading, or within-item, multidimensional modeling high-dimensional modeling bifactor modeling testlet modeling two-tier modeling For beginners, this book provides a straightforward guide to learn how to use R for IRT applications. For more intermediate learners of IRT or users of R, this book will serve as a great time-saving tool for learning how to create the proper syntax, fit the various models, evaluate the models, and interpret the output using popular R IRT packages.