Applications Of Big Data And Artificial Intelligence In Smart Energy Systems

Download Applications Of Big Data And Artificial Intelligence In Smart Energy Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applications Of Big Data And Artificial Intelligence In Smart Energy Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Applications of Big Data and Artificial Intelligence in Smart Energy Systems

In the era of propelling traditional energy systems to evolve towards smart energy systems, including power generation, energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, and domestic & industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution automation, energy regulation and control, and energy trading. This book covers the applications of various big data analytics, artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies such as the Internet of Things, blockchain, etc. for smart home solutions, and smart city solutions in depth in the context of the modern power systems. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI business models.
Applications of Big Data and Artificial Intelligence in Smart Energy Systems

In the era of propelling traditional energy systems to evolve towards smart energy systems, including power generation, energy storage systems, and electricity consumption have become more dynamic. The quality and reliability of power supply are impacted by the sporadic and rising use of electric vehicles, domestic loads, and industrial loads. Similarly, with the integration of solid state devices, renewable sources, and distributed generation, power generation processes are evolving in a variety of ways. Several cutting-edge technologies are necessary for the safe and secure operation of power systems in such a dynamic setting, including load distribution, automation, energy regulation & control, and energy trading. This book covers the applications of various big data analytics,artificial intelligence, and machine learning technologies in smart grids for demand prediction, decision-making processes, policy, and energy management. The book delves into the new technologies for modern power systems such as the Internet of Things, Blockchain for smart home and smart city solutions in depth. Technical topics discussed in the book include: • Hybrid smart energy system technologies • Smart meters • Energy demand forecasting • Use of different protocols and communication in smart energy systems • Power quality and allied issues and mitigation using AI • Intelligent transportation • Virtual power plants • AI based smart energy business models • Smart home solutions • Blockchain solutions for smart grids.
Smart Cities: Big Data Prediction Methods and Applications

Smart Cities: Big Data Prediction Methods and Applications is the first reference to provide a comprehensive overview of smart cities with the latest big data predicting techniques. This timely book discusses big data forecasting for smart cities. It introduces big data forecasting techniques for the key aspects (e.g., traffic, environment, building energy, green grid, etc.) of smart cities, and explores three key areas that can be improved using big data prediction: grid energy, road traffic networks and environmental health in smart cities. The big data prediction methods proposed in this book are highly significant in terms of the planning, construction, management, control and development of green and smart cities. Including numerous case studies to explain each method and model, this easy-to-understand book appeals to scientists, engineers, college students, postgraduates, teachers and managers from various fields of artificial intelligence, smart cities, smart grid, intelligent traffic systems, intelligent environments and big data computing.