Application Of Machine Learning And Deep Learning For Intrusion Detection System

Download Application Of Machine Learning And Deep Learning For Intrusion Detection System PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Application Of Machine Learning And Deep Learning For Intrusion Detection System book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Application of Machine Learning and Deep Learning for Intrusion Detection System

In today's world, a computer is highly exposed to attacks. In here, I try to build a predictive model to identify if the connection coming is an attack or genuine. Machine learning is that part of computer science in which instead of programming a machine we provide the ability to learn. Knowingly or unknowingly machine learning has become a part of our day to day lives. It could be in many ways like predicting stock market or image recognition while uploading a picture in Facebook and so on. Deep learning is a new concept which is trending these days, which moves a step towards the main aim of Machine Learning which is artificial intelligence. This machine learning/artificial intelligence can be used to make intrusion detection in a network more intelligent. We use different machine learning techniques including deep learning to figure out which approach is best for intrusion detection. To do this, we take a network intrusion dataset by Lincoln Labs who created an artificial set up to imitate U.S. Air Force LAN and get the TCP dumps generated. This also includes simulations of various types of attacks. We apply different machine learning algorithms on this data. And choose the machine learning algorithm which is most efficient to build a predictive model for intrusion detection. Now to the same dataset, we will apply Deep Learning mechanisms to build a predictive model with the algorithm that works the best for this data, after comparing the results generated by various deep learning algorithms. We build tool for each of the models (i.e. machine learning and deep learning). Now, the two tools one generated by machine learning and other by deep learning will be compared for accuracy.
Handbook of Research on Machine and Deep Learning Applications for Cyber Security

As the advancement of technology continues, cyber security continues to play a significant role in today’s world. With society becoming more dependent on the internet, new opportunities for virtual attacks can lead to the exposure of critical information. Machine and deep learning techniques to prevent this exposure of information are being applied to address mounting concerns in computer security. The Handbook of Research on Machine and Deep Learning Applications for Cyber Security is a pivotal reference source that provides vital research on the application of machine learning techniques for network security research. While highlighting topics such as web security, malware detection, and secure information sharing, this publication explores recent research findings in the area of electronic security as well as challenges and countermeasures in cyber security research. It is ideally designed for software engineers, IT specialists, cybersecurity analysts, industrial experts, academicians, researchers, and post-graduate students.
Network Intrusion Detection using Deep Learning

This book presents recent advances in intrusion detection systems (IDSs) using state-of-the-art deep learning methods. It also provides a systematic overview of classical machine learning and the latest developments in deep learning. In particular, it discusses deep learning applications in IDSs in different classes: generative, discriminative, and adversarial networks. Moreover, it compares various deep learning-based IDSs based on benchmarking datasets. The book also proposes two novel feature learning models: deep feature extraction and selection (D-FES) and fully unsupervised IDS. Further challenges and research directions are presented at the end of the book. Offering a comprehensive overview of deep learning-based IDS, the book is a valuable reerence resource for undergraduate and graduate students, as well as researchers and practitioners interested in deep learning and intrusion detection. Further, the comparison of various deep-learning applications helps readers gain a basic understanding of machine learning, and inspires applications in IDS and other related areas in cybersecurity.