Ant Algorithms


Download Ant Algorithms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Ant Algorithms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Ant Algorithms


Ant Algorithms

Author: Marco Dorigo

language: en

Publisher: Springer

Release Date: 2003-08-02


DOWNLOAD





This book constitutes the refereed proceedings of the Third International Workshop on Ant Algorithms, ANTS 2002, held in Brussels, Belgium in September 2002. The 17 revised full papers, 11 short papers, and extended poster abstracts presented were carefully reviewed and selected from 52 submissions. The papers deal with theoretical and foundational aspects and a variety of new variants of ant algorithms as well as with a broad variety of optimization applications in networking and operations research. All in all, this book presents the state of the art in research and development in the emerging field of ant algorithms

Nature-inspired Metaheuristic Algorithms


Nature-inspired Metaheuristic Algorithms

Author: Xin-She Yang

language: en

Publisher: Luniver Press

Release Date: 2010


DOWNLOAD





Modern metaheuristic algorithms such as particle swarm optimization and cuckoo search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms for global optimization, including ant and bee algorithms, bat algorithm, cuckoo search, differential evolution, firefly algorithm, genetic algorithms, harmony search, particle swarm optimization, simulated annealing and support vector machines. In this revised edition, we also include how to deal with nonlinear constraints. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course as well as for self study. As some of the algorithms such as the cuckoo search and firefly algorithms are at the forefront of current research, this book can also serve as a reference for researchers.

Ant Colony Optimization


Ant Colony Optimization

Author: Marco Dorigo

language: en

Publisher: MIT Press

Release Date: 2004-06-04


DOWNLOAD





An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.