Analyzing Medical Data Using S Plus

Download Analyzing Medical Data Using S Plus PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analyzing Medical Data Using S Plus book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Analyzing Medical Data Using S-PLUS

Author: Brian Everitt
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Each chapter will consist of basic statistical theory, simple examples of S-PLUS code, more complex examples of S-PLUS code, and exercises. All data sets will be taken from genuine medical investigations and will be made available, if possible, on a web site. All examples will contain extensive graphical analysis to highlight one of the prime features of S-PLUS. The book would complement Venables and Ripley (VR). However, there is far less about the details of S-PLUS and probably less technical descriptions of techniques. The book concentrates solely on medical data sets trying to demonstrate the flexibility of S-PLUS and its huge advantages, particularly for applied medical statisticians.
Regression Modeling Strategies

Author: Frank E. Harrell
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-03-09
Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".
Biostatistics and Computer-based Analysis of Health Data Using SAS

This volume of the Biostatistics and Health Sciences Set focuses on statistics applied to clinical research.The use of SAS for data management and statistical modeling is illustrated using various examples. Many aspects of data processing and statistical analysis of cross-sectional and experimental medical data are covered, including regression models commonly found in medical statistics. This practical book is primarily intended for health researchers with a basic knowledge of statistical methodology. Assuming basic concepts, the authors focus on the practice of biostatistical methods essential to clinical research, epidemiology and analysis of biomedical data (including comparison of two groups, analysis of categorical data, ANOVA, linear and logistic regression, and survival analysis). The use of examples from clinical trials and epidemiological studies provide the basis for a series of practical exercises, which provide instruction and familiarize the reader with essential SAS commands. - Presents the use of SAS software in the statistical approach for the management of data modeling - Includes elements of the language and descriptive statistics - Supplies measures of association, comparison of means, and proportions for two or more samples - Explores linear and logistic regression - Provides survival data analysis