Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity Second Edition

Download Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analytic Hyperbolic Geometry And Albert Einstein S Special Theory Of Relativity Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Analytic Hyperbolic Geometry And Albert Einstein's Special Theory Of Relativity (Second Edition)

Author: Abraham Albert Ungar
language: en
Publisher: World Scientific
Release Date: 2022-02-22
This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. The premise of analogy as a study strategy is to make the unfamiliar familiar. Accordingly, this book introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors. Gyrovectors turn out to be equivalence classes that add according to the gyroparallelogram law just as vectors are equivalence classes that add according to the parallelogram law. In the gyrolanguage of this book, accordingly, one prefixes a gyro to a classical term to mean the analogous term in hyperbolic geometry. As an example, the relativistic gyrotrigonometry of Einstein's special relativity is developed and employed to the study of the stellar aberration phenomenon in astronomy.Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. It turns out that the invariant mass of the relativistic center of mass of an expanding system (like galaxies) exceeds the sum of the masses of its constituent particles. This excess of mass suggests a viable mechanism for the formation of dark matter in the universe, which has not been detected but is needed to gravitationally 'glue' each galaxy in the universe. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying hyperbolic geometry.
Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity

This book presents a powerful way to study Einstein's special theory of relativity and its underlying hyperbolic geometry in which analogies with classical results form the right tool. It introduces the notion of vectors into analytic hyperbolic geometry, where they are called gyrovectors . Newtonian velocity addition is the common vector addition, which is both commutative and associative. The resulting vector spaces, in turn, form the algebraic setting for the standard model of Euclidean geometry. In full analogy, Einsteinian velocity addition is a gyrovector addition, which is both gyrocommutative and gyroassociative . The resulting gyrovector spaces, in turn, form the algebraic setting for the Beltrami-Klein ball model of the hyperbolic geometry of Bolyai and Lobachevsky. Similarly, MAbius addition gives rise to gyrovector spaces that form the algebraic setting for the Poincar(r) ball model of hyperbolic geometry. In full analogy with classical results, the book presents a novel relativistic interpretation of stellar aberration in terms of relativistic gyrotrigonometry and gyrovector addition. Furthermore, the book presents, for the first time, the relativistic center of mass of an isolated system of noninteracting particles that coincided at some initial time t = 0. The novel relativistic resultant mass of the system, concentrated at the relativistic center of mass, dictates the validity of the dark matter and the dark energy that were introduced by cosmologists as ad hoc postulates to explain cosmological observations about missing gravitational force and late-time cosmic accelerated expansion. The discovery of the relativistic center of mass in this book thus demonstrates once again the usefulness of the study of Einstein's special theory of relativity in terms of its underlying analytic hyperbolic geometry. Sample Chapter(s). Chapter 1: Introduction (145 KB). Contents: Gyrogroups; Gyrocommutative Gyrogroups; Gyrogroup Extension; Gyrovectors and Cogyrovectors; Gyrovector Spaces; Rudiments of Differential Geometry; Gyrotrigonometry; Bloch Gyrovector of Quantum Information and Computation; Special Theory of Relativity: The Analytic Hyperbolic Geometric Viewpoint; Relativistic Gyrotrigonometry; Stellar and Particle Aberration. Readership: Undergraduates, graduate students, researchers and academics in geometry, algebra, mathematical physics, theoretical physics and astronomy."
Analytic Hyperbolic Geometry in N Dimensions

The concept of the Euclidean simplex is important in the study of n-dimensional Euclidean geometry. This book introduces for the first time the concept of hyperbolic simplex as an important concept in n-dimensional hyperbolic geometry. Following the emergence of his gyroalgebra in 1988, the author crafted gyrolanguage, the algebraic language t