Analysis Of Variance Designs


Download Analysis Of Variance Designs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis Of Variance Designs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Analysis of Variance Designs


Analysis of Variance Designs

Author: Glenn Gamst

language: en

Publisher: Cambridge University Press

Release Date: 2008-09-01


DOWNLOAD





ANOVA (Analysis Of Variance) is one of the most fundamental and ubiquitous univariate methodologies employed by psychologists and other behavioural scientists. Analysis of Variance Designs presents the foundations of this experimental design, including assumptions, statistical significance, strength of effect, and the partitioning of the variance. Exploring the effects of one or more independent variables on a single dependent variable as well as two-way and three-way mixed designs, this textbook offers an overview of traditionally advanced topics for advanced undergraduates and graduate students in the behavioural and social sciences. Separate chapters are devoted to multiple comparisons (post hoc and planned/weighted), ANCOVA, and advanced topics. Each of the design chapters contains conceptual discussions, hand calculations, and procedures for the omnibus and simple effects analyses in both SPSS and the new 'click and shoot' SAS Enterprise Guide interface.

Introduction to Analysis of Variance: Design, Analyis & Interpretation


Introduction to Analysis of Variance: Design, Analyis & Interpretation

Author: J. Rick Turner

language: en

Publisher: SAGE

Release Date: 2001-04-13


DOWNLOAD





Having trouble finding a book that shows you not only how to analyze data but also how to collect the data appropriately and fully interpret the analysis, too? Here′s a new book that does all this in a particularly readable fashion. Turner and Thayer′s text: Shows how to design an experiment in the best possible way to investigate the topic of interest Explains which associated analysis will best answer your research question Demonstrates how to conduct the analysis and then fully interpret the results in the context of your research question Organized so that the reader moves from the simplest type of design to more complex ones, the authors introduce five different kinds of ANOVA techniques and explain which design/analysis is appropriate to answer specific questions. They show how to perform each analysis using only a calculator to provide the reader with a better "feel" for the analyses than simply seeing the mathematical answers on a computer print-out. The book concludes with tips for tests on ANOVA, and descriptions of how to use the knowledge gained from the text to determine the credibility of claims made and "statistics" presented in various types of reports.

Analysis of Variance, Design, and Regression


Analysis of Variance, Design, and Regression

Author: Ronald Christensen

language: en

Publisher: CRC Press

Release Date: 1996-06-01


DOWNLOAD





This text presents a comprehensive treatment of basic statistical methods and their applications. It focuses on the analysis of variance and regression, but also addressing basic ideas in experimental design and count data. The book has four connecting themes: similarity of inferential procedures, balanced one-way analysis of variance, comparison of models, and checking assumptions. Most inferential procedures are based on identifying a scalar parameter of interest, estimating that parameter, obtaining the standard error of the estimate, and identifying the appropriate reference distribution. Given these items, the inferential procedures are identical for various parameters. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of comparing the sample variance of the group means with the mean of the sample variance for each group. All balanced analysis of variance problems are considered in terms of computing sample variances for various group means. Comparing different models provides a structure for examining both balanced and unbalanced analysis of variance problems and regression problems. Checking assumptions is presented as a crucial part of every statistical analysis. Examples using real data from a wide variety of fields are used to motivate theory. Christensen consistently examines residual plots and presents alternative analyses using different transformation and case deletions. Detailed examination of interactions, three factor analysis of variance, and a split-plot design with four factors are included. The numerous exercises emphasize analysis of real data. Senior undergraduate and graduate students in statistics and graduate students in other disciplines using analysis of variance, design of experiments, or regression analysis will find this book useful.