Analysis Of Higher Order Correlations In Multiple Parallel Processes

Download Analysis Of Higher Order Correlations In Multiple Parallel Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis Of Higher Order Correlations In Multiple Parallel Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Computational Neuroscience: Trends in Research 2003

This volume includes papers originally presented at the 11th annual Computational Neuroscience Meeting (CNS 02) held in July 2002 at the Congress Plaza Hotel & Convention Center in Chicago, Illinois, USA. The CNS meetings bring together computational neuroscientists representing many different fields and backgrounds as well as many different experimental preparations and theoretical approaches. The papers published here range from pure experimental neurobiology, to neuro-ethology, mathematics, physics, and engineering. In all cases the research described is focused on understanding how nervous systems compute. The actual subjects of the research include a highly diverse number of preparations, modeling approaches and analysis techniques. Accordingly, this volume reflects the breadth and depth of current research in computational neuroscience taking place throughout the world.
Statistical analysis of multi-cell recordings: linking population coding models to experimental data

Modern recording techniques such as multi-electrode arrays and 2-photon imaging are capable of simultaneously monitoring the activity of large neuronal ensembles at single cell resolution. This makes it possible to study the dynamics of neural populations of considerable size, and to gain insights into their computations and functional organization. The key challenge with multi-electrode recordings is their high-dimensional nature. Understanding this kind of data requires powerful statistical techniques for capturing the structure of the neural population responses and their relation with external stimuli or behavioral observations. Contributions to this Research Topic should advance statistical modeling of neural populations. Questions of particular interest include: 1. What classes of statistical methods are most useful for modeling population activity? 2. What are the main limitations of current approaches, and what can be done to overcome them? 3. How can statistical methods be used to empirically test existing models of (probabilistic) population coding? 4. What role can statistical methods play in formulating novel hypotheses about the principles of information processing in neural populations? This Research Topic is connected to a one day workshop at the Computational Neuroscience Meeting 2009 in Berlin (http://www.cnsorg.org/2009/workshops.shtml and http://www.kyb.tuebingen.mpg.de/bethge/workshops/cns2009/)
Correlated neuronal activity and its relationship to coding, dynamics and network architecture

Author: Tatjana Tchumatchenko
language: en
Publisher: Frontiers E-books
Release Date: 2014-12-03
Correlated activity in populations of neurons has been observed in many brain regions and plays a central role in cortical coding, attention, and network dynamics. Accurately quantifying neuronal correlations presents several difficulties. For example, despite recent advances in multicellular recording techniques, the number of neurons from which spiking activity can be simultaneously recorded remains orders magnitude smaller than the size of local networks. In addition, there is a lack of consensus on the distribution of pairwise spike cross correlations obtained in extracellular multi-unit recordings. These challenges highlight the need for theoretical and computational approaches to understand how correlations emerge and to decipher their functional role in the brain.