Analysis For Time To Event Data Under Censoring And Truncation

Download Analysis For Time To Event Data Under Censoring And Truncation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis For Time To Event Data Under Censoring And Truncation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Analysis for Time-to-Event Data under Censoring and Truncation

Survival Analysis for Bivariate Truncated Data provides readers with a comprehensive review on the existing works on survival analysis for truncated data, mainly focusing on the estimation of univariate and bivariate survival function. The most distinguishing feature of survival data is known as censoring, which occurs when the survival time can only be exactly observed within certain time intervals. A second feature is truncation, which is often deliberate and usually due to selection bias in the study design. Truncation presents itself in different ways. For example, left truncation, which is often due to a so-called late entry bias, occurs when individuals enter a study at a certain age and are followed from this delayed entry time. Right truncation arises when only individuals who experienced the event of interest before a certain time point can be observed. Analyzing truncated survival data without considering the potential selection bias may lead to seriously biased estimates of the time to event of interest and the impact of risk factors. - Assists statisticians, epidemiologists, medical researchers, and actuaries who need to understand the mechanism of selection bias - Reviews existing works on survival analysis for truncated data, mainly focusing on the estimation of univariate and bivariate survival function - Offers a guideline for analyzing truncated survival data
Survival Analysis

Author: John P. Klein
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
Applied statisticians in many fields must frequently analyze time to event data. While the statistical tools presented in this book are applicable to data from medicine, biology, public health, epidemiology, engineering, economics, and demography, the focus here is on applications of the techniques to biology and medicine. The analysis of survival experiments is complicated by issues of censoring, where an individual's life length is known to occur only in a certain period of time, and by truncation, where individuals enter the study only if they survive a sufficient length of time or individuals are included in the study only if the event has occurred by a given date. The use of counting process methodology has allowed for substantial advances in the statistical theory to account for censoring and truncation in survival experiments. This book makes these complex methods more accessible to applied researchers without an advanced mathematical background. The authors present the essence of these techniques, as well as classical techniques not based on counting processes, and apply them to data. Practical suggestions for implementing the various methods are set off in a series of Practical Notes at the end of each section. Technical details of the derivation of the techniques are sketched in a series of Technical Notes. This book will be useful for investigators who need to analyze censored or truncated life time data, and as a textbook for a graduate course in survival analysis. The prerequisite is a standard course in statistical methodology. "This book...offers an excellent course in survival analysis for
The Statistical Analysis of Interval-censored Failure Time Data

This book collects and unifies statistical models and methods that have been proposed for analyzing interval-censored failure time data. It provides the first comprehensive coverage of the topic of interval-censored data and complements the books on right-censored data. The focus of the book is on nonparametric and semiparametric inferences, but it also describes parametric and imputation approaches. This book provides an up-to-date reference for people who are conducting research on the analysis of interval-censored failure time data as well as for those who need to analyze interval-censored data to answer substantive questions.