Analysis And Synthesis Of Singular Systems

Download Analysis And Synthesis Of Singular Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analysis And Synthesis Of Singular Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Analysis and Synthesis of Singular Systems with Time-Delays

Singular time-delay systems are very suitable to describe a lot of practical systems such as manufacturing systems, networked control systems, power systems and electrical circuits. Thus, the past two decades have witnessed a significant progress on the theory of singular time-delay systems, and many fundamental and important topics have been successfully investigated including stability analysis, stabilization, guaranteed cost control, filtering, observer design, sliding mode control and so on. The main objective of this book is to present the latest developments and references in the analysis and synthesis of singular time-delay systems with or without Markov jumping parameters in a unified framework. The materials adopted in this book are mainly based on research results of the authors. This book will be of interest to academic researchers working in singular systems, time-delay systems and Markov jump systems and to graduate students interested in systems and control theory.
Proceedings of the 2015 Chinese Intelligent Automation Conference

Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.
Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems

In control theory, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by application of a discontinuous control signal that forces the system to slide along a cross-section of the system's normal behaviour. In recent years, SMC has been successfully applied to a wide variety of practical engineering systems including robot manipulators, aircraft, underwater vehicles, spacecraft, flexible space structures, electrical motors, power systems, and automotive engines. Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems addresses the increasing demand for developing SMC technologies and comprehensively presents the new, state-of-the-art sliding mode control methodologies for uncertain parameter-switching hybrid systems. It establishes a unified framework for SMC of Markovian jump singular systems and proposes new SMC methodologies based on the analysis results. A series of problems are solved with new approaches for analysis and synthesis of switched hybrid systems, including stability analysis and stabilization, dynamic output feedback control, and SMC. A set of newly developed techniques (e.g. average dwell time, piecewise Lyapunov function, parameter-dependent Lyapunov function, cone complementary linearization) are exploited to handle the emerging mathematical/computational challenges. Key features: Covers new concepts, new models and new methodologies with theoretical significance in system analysis and control synthesis Includes recent advances in Markovian jump systems, switched hybrid systems, singular systems, stochastic systems and time-delay systems Includes solved problems Introduces advanced techniques Sliding Mode Control of Uncertain Parameter-Switching Hybrid Systems is a comprehensive reference for researchers and practitioners working in control engineering, system sciences and applied mathematics, and is also a useful source of information for senior undergraduate and graduates studying in these areas.