Analog Circuits And Systems Optimization Based On Evolutionary Computation Techniques

Download Analog Circuits And Systems Optimization Based On Evolutionary Computation Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Analog Circuits And Systems Optimization Based On Evolutionary Computation Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Analog Circuits and Systems Optimization based on Evolutionary Computation Techniques

The microelectronics market, with special emphasis to the production of complex mixed-signal systems-on-chip (SoC), is driven by three main dynamics, time-- market, productivity and managing complexity. Pushed by the progress in na- meter technology, the design teams are facing a curve of complexity that grows exponentially, thereby slowing down the productivity design rate. Analog design automation tools are not developing at the same pace of technology, once custom design, characterized by decisions taken at each step of the analog design flow, - lies most of the time on designer knowledge and expertise. Actually, the use of - sign management platforms, like the Cadences Virtuoso platform, with a set of - tegrated CAD tools and database facilities to deal with the design transformations from the system level to the physical implementation, can significantly speed-up the design process and enhance the productivity of analog/mixed-signal integrated circuit (IC) design teams. These design management platforms are a valuable help in analog IC design but they are still far behind the development stage of design automation tools already available for digital design. Therefore, the development of new CAD tools and design methodologies for analog and mixed-signal ICs is ess- tial to increase the designer’s productivity and reduce design productivitygap. The work presented in this book describes a new design automation approach to the problem of sizing analog ICs.
AIDA-CMK: Multi-Algorithm Optimization Kernel Applied to Analog IC Sizing

This work addresses the research and development of an innovative optimization kernel applied to analog integrated circuit (IC) design. Particularly, this works describes the modifications inside the AIDA Framework, an electronic design automation framework fully developed by at the Integrated Circuits Group-LX of the Instituto de Telecomunicações, Lisbon. It focusses on AIDA-CMK, by enhancing AIDA-C, which is the circuit optimizer component of AIDA, with a new multi-objective multi-constraint optimization module that constructs a base for multiple algorithm implementations. The proposed solution implements three approaches to multi-objective multi-constraint optimization, namely, an evolutionary approach with NSGAII, a swarm intelligence approach with MOPSO and stochastic hill climbing approach with MOSA. Moreover, the implemented structure allows the easy hybridization between kernels transforming the previous simple NSGAII optimization module into a more evolved and versatile module supporting multiple single and multi-kernel algorithms. The three multi-objective optimization approaches were validated with CEC2009 benchmarks to constrained multi-objective optimization and tested with real analog IC design problems. The achieved results were compared in terms of performance, using statistical results obtained from multiple independent runs. Finally, some hybrid approaches were also experimented, giving a foretaste to a wide range of opportunities to explore in future work.
Electronic Design Automation of Analog ICs combining Gradient Models with Multi-Objective Evolutionary Algorithms

Author: Frederico A.E. Rocha
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-09-24
This book applies to the scientific area of electronic design automation (EDA) and addresses the automatic sizing of analog integrated circuits (ICs). Particularly, this book presents an approach to enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), by embedding statistical knowledge from an automatically generated gradient model into the multi-objective multi-constraint optimization kernel based on the NSGA-II algorithm. The results showed allow the designer to explore the different trade-offs of the solution space, both through the achieved device sizes, or the respective layout solutions.