An Optimized Method For Solving Membership Based Neutrosophic Linear Programming Problems

Download An Optimized Method For Solving Membership Based Neutrosophic Linear Programming Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Optimized Method For Solving Membership Based Neutrosophic Linear Programming Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Optimized Method for Solving Membership-based Neutrosophic Linear Programming Problems

Linear Programming (LP) is an essential approach in mathematical programming because it is a viable technique used for addressing linear systems involving linear parameters and continuous constraints. The most important use of LP resides in solving the issues requiring resource management. Because many real-world issues are too complicated to be accurately characterized, indeterminacy is often present in every engineering planning process. Neutrosophic logic, which is an application of intuitionistic fuzzy sets, is a useful logic for dealing with indeterminacy. Neutrosophic Linear Programming (NLP) issues are essential in neutrosophic modelling because they may express uncertainty in the physical universe. Numerous techniques have been proposed to alleviate NLP difficulties. On the surface, the current approaches in the specialized literature are unable to tackle issues with non-deterministic variables. In other words, no method for solving a truly neutrosophic problem has been offered. For the first time, a unique approach is provided for tackling Fully Neutrosophic Linear Programming (FNLP) problems in this study. The proposed study uses a decomposition method to break the FNLP problem into three separate bounded problems. Then, these problems are solved using simplex techniques. Unlike other existing methods, the proposed method can solve NLP problems with neutrosophic values for variables. In this research, the decision-makers have the freedom to consider the variables with neutrosophic structure, while obtaining the optimal objective value as a crisp number. It should also be noted that the typical NLP problems, which can be solved by means of the existing methods, can also be solved through the method proposed in this paper.
A New Method for Solving Interval Neutrosophic Linear Programming Problems

Neutrosophic set theory is a generalization of the intuitionistic fuzzy set which can be considered as a powerful tool to express the indeterminacy and inconsistent information that exist commonly in engineering applications and real meaningful science activities. In this paper an interval neutrosophic linear programming (INLP) model will be presented, where its parameters are represented by triangular interval neutrosophic numbers (TINNs) and call it INLP problem. Afterward, by using a ranking function we present a technique to convert the INLP problem into a crisp model and then solve it by standard methods.
Optimization Theory Based on Neutrosophic and Plithogenic Sets

Author: Florentin Smarandache
language: en
Publisher: Academic Press
Release Date: 2020-01-14
Optimization Theory Based on Neutrosophic and Plithogenic Sets presents the state-of-the-art research on neutrosophic and plithogenic theories and their applications in various optimization fields. Its table of contents covers new concepts, methods, algorithms, modelling, and applications of green supply chain, inventory control problems, assignment problems, transportation problem, nonlinear problems and new information related to optimization for the topic from the theoretical and applied viewpoints in neutrosophic sets and logic. - All essential topics about neutrosophic optimization and Plithogenic sets make this volume the only single source of comprehensive information - New and innovative theories help researchers solve problems under diverse optimization environments - Varied applications address practitioner fields such as computational intelligence, image processing, medical diagnosis, fault diagnosis, and optimization design