An Operator Perspective On Signals And Systems

Download An Operator Perspective On Signals And Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Operator Perspective On Signals And Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Operator Perspective on Signals and Systems

Author: Arthur Frazho
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-12-29
In this monograph, we combine operator techniques with state space methods to solve factorization, spectral estimation, and interpolation problems arising in control and signal processing. We present both the theory and algorithms with some Matlab code to solve these problems. A classical approach to spectral factorization problems in control theory is based on Riccati equations arising in linear quadratic control theory and Kalman ?ltering. One advantage of this approach is that it readily leads to algorithms in the non-degenerate case. On the other hand, this approach does not easily generalize to the nonrational case, and it is not always transparent where the Riccati equations are coming from. Operator theory has developed some elegant methods to prove the existence of a solution to some of these factorization and spectral estimation problems in a very general setting. However, these techniques are in general not used to develop computational algorithms. In this monograph, we will use operator theory with state space methods to derive computational methods to solve factorization, sp- tral estimation, and interpolation problems. It is emphasized that our approach is geometric and the algorithms are obtained as a special application of the theory. We will present two methods for spectral factorization. One method derives al- rithms based on ?nite sections of a certain Toeplitz matrix. The other approach uses operator theory to develop the Riccati factorization method. Finally, we use isometric extension techniques to solve some interpolation problems.
Advanced Topics in System and Signal Theory

Author: Volker Pohl
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-10-03
The requirement of causality in system theory is inevitably accompanied by the appearance of certain mathematical operations, namely the Riesz proj- tion,theHilberttransform,andthespectralfactorizationmapping.Aclassical exampleillustratingthisisthedeterminationoftheso-calledWiener?lter(the linear, minimum means square error estimation ?lter for stationary stochastic sequences [88]). If the ?lter is not required to be causal, the transfer function of the Wiener ?lter is simply given by H(?)=? (?)/? (?),where ? (?) xy xx xx and ? (?) are certain given functions. However, if one requires that the - xy timation ?lter is causal, the transfer function of the optimal ?lter is given by 1 ? (?) xy H(?)= P ,?? (??,?] . + [? ] (?) [? ] (?) xx + xx? Here [? ] and [? ] represent the so called spectral factors of ? ,and xx + xx? xx P is the so called Riesz projection. Thus, compared to the non-causal ?lter, + two additional operations are necessary for the determination of the causal ?lter, namely the spectral factorization mapping ? ? ([? ] ,[? ] ),and xx xx + xx? the Riesz projection P .