An Introduction To Unconstrained Optimisation


Download An Introduction To Unconstrained Optimisation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Unconstrained Optimisation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

An Introduction to Unconstrained Optimisation


An Introduction to Unconstrained Optimisation

Author: J McKeown

language: en

Publisher: CRC Press

Release Date: 1990-01-01


DOWNLOAD





Integrating computer graphics and computer-based exercises with the text, An Introduction to Unconstrained Optimisation illustrates key methods with many examples and exercises using the computer. The book takes an elementary approach to this advanced topic, allowing readers to concentrate on learning and understanding the concepts of numerical optimization without unnecessary involvement in the intricacies of the subject. In addition, the modular approach of the software provides the opportunity to explore the algorithms used and to develop them further or try alternative approaches. Most of the algorithms are based upon a "hill-climbing" concept which, in two dimensions, is illustrated dynamically on the computer screen in the form of contour plots and search directions. The text is not specific to any particular microcomputer. Software is available for the BBC series of machines (40/80 track disc formats) and PC-compatible machines. The software is not available from your local bookstore, but is easily obtainable using the order form in the book. Keeping proofs and lists of methods to a minimum, the book is at a level suitable for a first course in numerical analysis, with a basic knowledge of calculus and vector algebra assumed. This book/software package will be of interest to professionals, teachers, and undergraduate students in mathematics, operational research, science, and engineering as well as economics and management courses that deal with quantitative methods.

Introduction to Unconstrained Optimization with R


Introduction to Unconstrained Optimization with R

Author: Shashi Kant Mishra

language: en

Publisher: Springer Nature

Release Date: 2019-12-17


DOWNLOAD





This book discusses unconstrained optimization with R—a free, open-source computing environment, which works on several platforms, including Windows, Linux, and macOS. The book highlights methods such as the steepest descent method, Newton method, conjugate direction method, conjugate gradient methods, quasi-Newton methods, rank one correction formula, DFP method, BFGS method and their algorithms, convergence analysis, and proofs. Each method is accompanied by worked examples and R scripts. To help readers apply these methods in real-world situations, the book features a set of exercises at the end of each chapter. Primarily intended for graduate students of applied mathematics, operations research and statistics, it is also useful for students of mathematics, engineering, management, economics, and agriculture.

An Introduction to Optimization


An Introduction to Optimization

Author: Edwin K. P. Chong

language: en

Publisher: John Wiley & Sons

Release Date: 2004-03-22


DOWNLOAD





A modern, up-to-date introduction to optimization theory and methods This authoritative book serves as an introductory text to optimization at the senior undergraduate and beginning graduate levels. With consistently accessible and elementary treatment of all topics, An Introduction to Optimization, Second Edition helps students build a solid working knowledge of the field, including unconstrained optimization, linear programming, and constrained optimization. Supplemented with more than one hundred tables and illustrations, an extensive bibliography, and numerous worked examples to illustrate both theory and algorithms, this book also provides: * A review of the required mathematical background material * A mathematical discussion at a level accessible to MBA and business students * A treatment of both linear and nonlinear programming * An introduction to recent developments, including neural networks, genetic algorithms, and interior-point methods * A chapter on the use of descent algorithms for the training of feedforward neural networks * Exercise problems after every chapter, many new to this edition * MATLAB(r) exercises and examples * Accompanying Instructor's Solutions Manual available on request An Introduction to Optimization, Second Edition helps students prepare for the advanced topics and technological developments that lie ahead. It is also a useful book for researchers and professionals in mathematics, electrical engineering, economics, statistics, and business. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.