An Introduction To Two Dimensional Quantum Field Theory With 0 2 Supersymmetry

Download An Introduction To Two Dimensional Quantum Field Theory With 0 2 Supersymmetry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Two Dimensional Quantum Field Theory With 0 2 Supersymmetry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Two-Dimensional Quantum Field Theory with (0,2) Supersymmetry

This book introduces two-dimensional supersymmetric field theories with emphasis on both linear and non-linear sigma models. Complex differential geometry, in connection with supersymmetry, has played a key role in most developments of the last thirty years in quantum field theory and string theory. Both structures introduce a great deal of rigidity compared to the more general categories of non-supersymmetric theories and real differential geometry, allowing for many general conceptual results and detailed quantitative predictions. Two-dimensional (0,2) supersymmetric quantum field theories provide a natural arena for the fruitful interplay between geometry and quantum field theory. These theories play an important role in string theory and provide generalizations, still to be explored fully, of rich structures such as mirror symmetry. They also have applications to non-perturbative four-dimensional physics, for instance as descriptions of surface defects or low energy dynamics of solitonic strings in four-dimensional supersymmetric theories. The purpose of these lecture notes is to acquaint the reader with these fascinating theories, assuming a background in conformal theory, quantum field theory and differential geometry at the beginning graduate level. In order to investigate the profound relations between structures from complex geometry and field theory the text begins with a thorough examination of the basic structures of (0,2) quantum field theory and conformal field theory. Next, a simple class of Lagrangian theories, the (0,2) Landau-Ginzburg models, are discussed, together with the resulting renormalization group flows, dynamics, and symmetries. After a thorough introduction and examination of (0,2) non-linear sigma models, the text introduces linear sigma models that, in particular, provide a unified treatment of non-linear sigma models and Landau-Ginzburg theories. Many exercises, along with discussions of relevant mathematical notions and important open problems in the field, are included in the text.
Gribov-85 Memorial Volume: Exploring Quantum Field Theory - Proceedings Of The Memorial Workshop Devoted To The 85th Birthday Of V N Gribov

Author: Yuri L Dokshitzer
language: en
Publisher: World Scientific
Release Date: 2016-09-16
Vladimir Naumovich Gribov is one of the creators of modern theoretical physics. The concepts and methods that Gribov has developed in the second half of the 20th century became cornerstones of the physics of high energy hadron interactions (relativistic theory of complex angular momenta, a notion of the vacuum pole — Pomeron, effective reggeon field theory), condensed matter physics (critical phenomena), neutrino oscillations, and nuclear physics.His unmatched insights into the nature of the quantum field theory helped to elucidate, in particular, the origin of classical solutions (instantons), quantum anomalies, specific problems in quantization of non-Abelian fields (Gribov anomalies, Gribov horizon), and the role of light quarks in the color confinement phenomenon.The fifth memorial workshop which marked Gribov's 85th birthday took place at the Landau Institute for Theoretical Physics, Russia, in June 2015. Participants of the workshop who came to Chernogolovka from different parts of the world presented new results of studies of many challenging theoretical physics problems across a broad variety of topics, and shared memories about their colleague, great teacher and friend.This book is a collection of the presented talks and contributed papers, which affirm the everlasting impact of Gribov's scientific heritage upon the physics of the 21st century.
Statistical Approach to Quantum Field Theory

Over the past few decades the powerful methods of statistical physics and Euclidean quantum field theory have moved closer together, with common tools based on the use of path integrals. The interpretation of Euclidean field theories as particular systems of statistical physics has opened up new avenues for understanding strongly coupled quantum systems or quantum field theories at zero or finite temperatures. Accordingly, the first chapters of this book contain a self-contained introduction to path integrals in Euclidean quantum mechanics and statistical mechanics. The resulting high-dimensional integrals can be estimated with the help of Monte Carlo simulations based on Markov processes. The most commonly used algorithms are presented in detail so as to prepare the reader for the use of high-performance computers as an “experimental” tool for this burgeoning field of theoretical physics. Several chapters are then devoted to an introduction to simple lattice field theories and a variety of spin systems with discrete and continuous spins, where the ubiquitous Ising model serves as an ideal guide for introducing the fascinating area of phase transitions. As an alternative to the lattice formulation of quantum field theories, variants of the flexible renormalization group methods are discussed in detail. Since, according to our present-day knowledge, all fundamental interactions in nature are described by gauge theories, the remaining chapters of the book deal with gauge theories without and with matter. This text is based on course-tested notes for graduate students and, as such, its style is essentially pedagogical, requiring only some basics of mathematics, statistical physics, and quantum field theory. Yet it also contains some more sophisticated concepts which may be useful to researchers in the field. Each chapter ends with a number of problems – guiding the reader to a deeper understanding of some of the material presented in the main text – and, in most cases, also features some listings of short, useful computer programs.