An Introduction To Theory And Applications Of Stationary Variational Hemivariational Inequalities

Download An Introduction To Theory And Applications Of Stationary Variational Hemivariational Inequalities PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Theory And Applications Of Stationary Variational Hemivariational Inequalities book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Theory and Applications of Stationary Variational-Hemivariational Inequalities

This book offers a comprehensive and accessible introduction to the mathematical theory of stationary Variational-Hemivariational Inequalities (VHIs), a rapidly growing area of research with significant applications in science and engineering. Unlike traditional approaches that rely heavily on abstract inclusion results for pseudomonotone operators, this work presents a more user-friendly method grounded in basic Functional Analysis. VHIs include variational inequalities and hemivariational inequalities as special cases. The book systematically categorizes and names different VHIs, making it easier for readers to understand the specific problems being addressed. Designed for graduate students and researchers in mathematics, physical sciences, and engineering, this monograph not only provides a concise review of essential materials in Sobolev spaces, convex analysis, and nonsmooth analysis but also delves into applications in contact and fluid mechanics. Through detailed explanations and practical examples, the book bridges the gap between theory and practice, making the complex subject of VHIs more approachable. By focusing on the well-posedness of various forms of VHIs and extending the analysis to include mixed VHIs for the Stokes and Navier-Stokes equations, this book serves as an essential resource for anyone interested in the modeling, analysis, numerical solutions, and real-world applications of VHIs.
Error Control, Adaptive Discretizations, and Applications, Part 3

Error Control, Adaptive Discretizations, and Applications, Volume 60, Part Three highlights new advances, with this volume presenting interesting chapters written by an international board of authors. Chapters in this release cover Higher order discontinuous Galerkin finite element methods for the contact problems, Anisotropic Recovery-Based Error Estimators and Mesh Adaptation Tailored for Real-Life Engineering Innovation, Adaptive mesh refinement on Cartesian meshes applied to the mixed finite element discretization of the multigroup neutron diffusion equations, A posteriori error analysis for Finite Element approximation of some groundwater models Part I: Linear models, A posteriori error estimates for low frequency electromagnetic computations, and more.Other sections delve into A posteriori error control for stochastic Galerkin FEM with high-dimensional random parametric PDEs and Recovery techniques for finite element methods. - Covers multi-scale modeling - Includes updates on data-driven modeling - Presents the latest information on large deformations of multi-scale materials
Well-Posed Nonlinear Problems

This monograph presents an original method to unify the mathematical theories of well-posed problems and contact mechanics. The author uses a new concept called the Tykhonov triple to develop a well-posedness theory in which every convergence result can be interpreted as a well-posedness result. This will be useful for studying a wide class of nonlinear problems, including fixed-point problems, inequality problems, and optimal control problems. Another unique feature of the manuscript is the unitary treatment of mathematical models of contact, for which new variational formulations and convergence results are presented. Well-Posed Nonlinear Problems will be a valuable resource for PhD students and researchers studying contact problems. It will also be accessible to interested researchers in related fields, such as physics, mechanics, engineering, and operations research.