An Introduction To The Theory Of Wave Maps And Related Geometric Problems

Download An Introduction To The Theory Of Wave Maps And Related Geometric Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To The Theory Of Wave Maps And Related Geometric Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction To The Theory Of Wave Maps And Related Geometric Problems

Author: Dan-andrei Geba
language: en
Publisher: World Scientific Publishing Company
Release Date: 2016-08-18
The wave maps system is one of the most beautiful and challenging nonlinear hyperbolic systems, which has captured the attention of mathematicians for more than thirty years now. In the study of its various issues, such as the well-posedness theory, the formation of singularities, and the stability of the solitons, in order to obtain optimal results, one has to use intricate tools coming not only from analysis, but also from geometry and topology. Moreover, the wave maps system is nothing other than the Euler-Lagrange system for the nonlinear sigma model, which is one of the fundamental problems in classical field theory. One of the goals of our book is to give an up-to-date and almost self-contained overview of the main regularity results proved for wave maps. Another one is to introduce, to a wide mathematical audience, physically motivated generalizations of the wave maps system (e.g., the Skyrme model), which are extremely interesting and difficult in their own right.
Nonlinear Partial Differential Equations in Geometry and Physics

This volume presents the proceedings of a series of lectures hosted by the Math ematics Department of The University of Tennessee, Knoxville, March 22-24, 1995, under the title "Nonlinear Partial Differential Equations in Geometry and Physics" . While the relevance of partial differential equations to problems in differen tial geometry has been recognized since the early days of the latter subject, the idea that differential equations of differential-geometric origin can be useful in the formulation of physical theories is a much more recent one. Perhaps the earliest emergence of systems of nonlinear partial differential equations having deep geo metric and physical importance were the Einstein equations of general relativity (1915). Several basic aspects of the initial value problem for the Einstein equa tions, such as existence, regularity and stability of solutions remain prime research areas today. eighty years after Einstein's work. An even more recent development is the realization that structures originally the context of models in theoretical physics may turn out to have introduced in important geometric or topological applications. Perhaps its emergence can be traced back to 1954, with the introduction of a non-abelian version of Maxwell's equations as a model in elementary-particle physics, by the physicists C.N. Yang and R. Mills. The rich geometric structure ofthe Yang-Mills equations was brought to the attention of mathematicians through work of M.F. Atiyah, :"J. Hitchin, I.
Geometric Wave Equations

Author: Jalal M. Ihsan Shatah
language: en
Publisher: American Mathematical Soc.
Release Date: 2000
This volume contains notes of the lectures given at the Courant Institute and a DMV-Seminar at Oberwolfach. The focus is on the recent work of the authors on semilinear wave equations with critical Sobolev exponents and on wave maps in two space dimensions. Background material and references have been added to make the notes self-contained. The book is suitable for use in a graduate-level course on the topic. Titles in this series are co-published with the Courant Institute of Mathematical Sciences at New York University.