An Introduction To The Theory Of Stellar Structure And Evolution

Download An Introduction To The Theory Of Stellar Structure And Evolution PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To The Theory Of Stellar Structure And Evolution book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to the Theory of Stellar Structure and Evolution

Author: Dina Prialnik
language: en
Publisher: Cambridge University Press
Release Date: 2000-07-24
Using fundamental physics, the theory of stellar structure and evolution is able to predict how stars are born, how their complex internal structure changes, what nuclear fuel they burn, and what their ultimate fate is - a fading whitedwarf, or a cataclysmic explosion as a supernova, leaving behind a collapsed neutron star or black hole. This lucid textbook provides students with a clear and pedagogical introduction to the theory of stellar structure and evolution. It requires only basic physics and mathematics learnt in first- and second-year undergraduate studies, and assumes no prior knowledge of astronomy. The unique feature of this book is the emphasis throughout on the basic physical principles governing stellar evolution. Exercises and their full solutions are included to help students test their understanding. This textbook provides a stimulating introduction for undergraduates in astronomy, physics, planetary science and applied mathematics taking a course on the physics of stars.
An Introduction to the Theory of Stellar Structure and Evolution

Author: Dina Prialnik
language: en
Publisher: Cambridge University Press
Release Date: 2009-10-29
Using fundamental physics, the theory of stellar structure and evolution can predict how stars are born, how their complex internal structure changes, what nuclear fuel they burn, and their ultimate fate. This textbook is a stimulating introduction for undergraduates in astronomy, physics and applied mathematics, taking a course on the physics of stars. It uniquely emphasizes the basic physical principles governing stellar structure and evolution. This second edition contains two new chapters on mass loss from stars and interacting binary stars, and new exercises. Clear and methodical, it explains the processes in simple terms, while maintaining mathematical rigor. Starting from general principles, this textbook leads students step-by-step to a global, comprehensive understanding of the subject. Fifty exercises and full solutions allow students to test their understanding. No prior knowledge of astronomy is required, and only a basic background in physics and mathematics is necessary.
Stellar Structure and Evolution

Author: Rudolf Kippenhahn
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-10-31
This long-awaited second edition of the classical textbook on Stellar Structure and Evolution by Kippenhahn and Weigert is a thoroughly revised version of the original text. Taking into account modern observational constraints as well as additional physical effects such as mass loss and diffusion, Achim Weiss and Rudolf Kippenhahn have succeeded in bringing the book up to the state-of-the-art with respect to both the presentation of stellar physics and the presentation and interpretation of current sophisticated stellar models. The well-received and proven pedagogical approach of the first edition has been retained. The book provides a comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The models developed to explain the stability, dynamics and evolution of the stars are presented and great care is taken to detail the various stages in a star’s life. Just as the first edition, which remained a standard work for more than 20 years after its first publication, the second edition will be of lasting value not only for students but also for active researchers in astronomy and astrophysics.