An Introduction To The Atomic And Radiation Physics Of Plasmas

Download An Introduction To The Atomic And Radiation Physics Of Plasmas PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To The Atomic And Radiation Physics Of Plasmas book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to the Atomic and Radiation Physics of Plasmas

Author: G. J. Tallents
language: en
Publisher: Cambridge University Press
Release Date: 2018-02-22
The physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas is developed from first principles and applied across various fields, from quantum mechanics, electricity and magnetism, to statistical physics. This text links undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research.
The Physics of Plasmas

Author: T. J. M. Boyd
language: en
Publisher: Cambridge University Press
Release Date: 2003-01-23
The Physics of Plasmas provides a comprehensive introduction to the subject, illustrating the basic theory with examples drawn from fusion, space and astrophysical plasmas. A particular strength of the book is its discussion of the various models used to describe plasma physics and the relationships between them. These include particle orbit theory, fluid equations, ideal and resistive magnetohydrodynamics, wave equations and kinetic theory. The reader will gain a firm grounding in the fundamentals, and develop this into an understanding of some of the more specialised topics. Throughout the text, there is an emphasis on the physical interpretation of plasma phenomena. Exercises are provided throughout. Advanced undergraduate and graduate students of physics, applied mathematics, astronomy and engineering will find a clear but rigorous explanation of the fundamental properties of plasmas with minimal mathematical formality. This book will also appeal to research physicists, nuclear and electrical engineers.
Plasma Atomic Physics

Plasma Atomic Physics provides an overview of the elementary processes within atoms and ions in plasmas, and introduces readers to the language of atomic spectra and light emission, allowing them to explore the various and fascinating radiative properties of matter. The book familiarizes readers with the complex quantum-mechanical descriptions of electromagnetic and collisional processes, while also developing a number of effective qualitative models that will allow them to obtain adequately comprehensive descriptions of collisional-radiative processes in dense plasmas, dielectronic satellite emissions and autoionizing states, hollow ion X-ray emissions, polarized atoms and ions, hot electrons, charge exchange, atomic population kinetics, and radiation transport. Numerous applications to plasma spectroscopy and experimental data are presented, which concern magnetic confinement fusion, inertial fusion, laser-produced plasmas, and X-ray free-electron lasers’ interaction with matter. Particular highlights include the development of quantum kinetics to a level surpassing the almost exclusively used quasi-classical approach in atomic population kinetics, the introduction of the recently developed Quantum-F-Matrix-Theory (QFMT) to study the impact of plasma microfields on atomic populations, and the Enrico Fermi equivalent photon method to develop the “Plasma Atom”, where the response properties and oscillator strength distribution are represented with the help of a local plasma frequency of the atomic electron density. Based on courses held by the authors, this material will assist students and scientists studying the complex processes within atoms and ions in different kinds of plasmas by developing relatively simple but highly effective models. Considerable attention is paid to a number of qualitative models that deliver physical transparency, while extensive tables and formulas promote the practical and useful application of complex theories and provide effective tools for non-specialist readers.