An Introduction To Substructural Logics Pdf


Download An Introduction To Substructural Logics Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Substructural Logics Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Samson Abramsky on Logic and Structure in Computer Science and Beyond


Samson Abramsky on Logic and Structure in Computer Science and Beyond

Author: Alessandra Palmigiano

language: en

Publisher: Springer Nature

Release Date: 2023-08-01


DOWNLOAD





Samson Abramsky’s wide-ranging contributions to logical and structural aspects of Computer Science have had a major influence on the field. This book is a rich collection of papers, inspired by and extending Abramsky’s work. It contains both survey material and new results, organised around six major themes: domains and duality, game semantics, contextuality and quantum computation, comonads and descriptive complexity, categorical and logical semantics, and probabilistic computation. These relate to different stages and aspects of Abramsky’s work, reflecting its exceptionally broad scope and his ability to illuminate and unify diverse topics. Chapters in the volume include a review of his entire body of work, spanning from philosophical aspects to logic, programming language theory, quantum theory, economics and psychology, and relating it to a theory of unification of sciences using dual adjunctions. The section on game semantics shows how Abramsky’s work has led to a powerful new paradigm for the semantics of computation. The work on contextuality and categorical quantum mechanics has been highly influential, and provides the foundation for increasingly widely used methods in quantum computing. The work on comonads and descriptive complexity is building bridges between currently disjoint research areas in computer science, relating Structure to Power. The volume also includes a scientific autobiography, and an overview of the contributions. The outstanding set of contributors to this volume, including both senior and early career academics, serve as testament to Samson Abramsky’s enduring influence. It will provide an invaluable and unique resource for both students and established researchers.

Residuated Lattices: An Algebraic Glimpse at Substructural Logics


Residuated Lattices: An Algebraic Glimpse at Substructural Logics

Author: Nikolaos Galatos

language: en

Publisher: Elsevier

Release Date: 2007-04-25


DOWNLOAD





The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.

Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science


Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science

Author: Janusz Czelakowski

language: en

Publisher: Springer

Release Date: 2018-03-20


DOWNLOAD





This book celebrates the work of Don Pigozzi on the occasion of his 80th birthday. In addition to articles written by leading specialists and his disciples, it presents Pigozzi’s scientific output and discusses his impact on the development of science. The book both catalogues his works and offers an extensive profile of Pigozzi as a person, sketching the most important events, not only related to his scientific activity, but also from his personal life. It reflects Pigozzi's contribution to the rise and development of areas such as abstract algebraic logic (AAL), universal algebra and computer science, and introduces new scientific results. Some of the papers also present chronologically ordered facts relating to the development of the disciplines he contributed to, especially abstract algebraic logic. The book offers valuable source material for historians of science, especially those interested in history of mathematics and logic.