An Introduction To Statistical Thermodynamics

Download An Introduction To Statistical Thermodynamics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Statistical Thermodynamics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Statistical Thermodynamics

Author: Terrell L. Hill
language: en
Publisher: Courier Corporation
Release Date: 1986-01-01
"A large number of exercises of a broad range of difficulty make this book even more useful…a good addition to the literature on thermodynamics at the undergraduate level." — Philosophical Magazine Although written on an introductory level, this wide-ranging text provides extensive coverage of topics of current interest in equilibrium statistical mechanics. Indeed, certain traditional topics are given somewhat condensed treatment to allow room for a survey of more recent advances. The book is divided into four major sections. Part I deals with the principles of quantum statistical mechanics and includes discussions of energy levels, states and eigenfunctions, degeneracy and other topics. Part II examines systems composed of independent molecules or of other independent subsystems. Topics range from ideal monatomic gas and monatomic crystals to polyatomic gas and configuration of polymer molecules and rubber elasticity. An examination of systems of interacting molecules comprises the nine chapters in Part Ill, reviewing such subjects as lattice statistics, imperfect gases and dilute liquid solutions. Part IV covers quantum statistics and includes sections on Fermi-Dirac and Bose-Einstein statistics, photon gas and free-volume theories of quantum liquids. Each chapter includes problems varying in difficulty — ranging from simple numerical exercises to small-scale "research" propositions. In addition, supplementary reading lists for each chapter invite students to pursue the subject at a more advanced level. Readers are assumed to have studied thermodynamics, calculus, elementary differential equations and elementary quantum mechanics. Because of the flexibility of the chapter arrangements, this book especially lends itself to use in a one-or two-semester graduate course in chemistry, a one-semester senior or graduate course in physics or an introductory course in statistical mechanics.
Introductory Statistical Thermodynamics

Introductory Statistical Thermodynamics is a text for an introductory one-semester course in statistical thermodynamics for upper-level undergraduate and graduate students in physics and engineering. The book offers a high level of detail in derivations of all equations and results. This information is necessary for students to grasp difficult concepts in physics that are needed to move on to higher level courses. The text is elementary, self contained, and mathematically well-founded, containing a number of problems with detailed solutions to help students to grasp the more difficult theoretical concepts. - Beginning chapters place an emphasis on quantum mechanics - Includes problems with detailed solutions and a number of detailed theoretical derivations at the end of each chapter - Provides a high level of detail in derivations of all equations and results
An Introduction to Applied Statistical Thermodynamics

Author: Stanley I. Sandler
language: en
Publisher: John Wiley & Sons
Release Date: 2010-11-16
With the present emphasis on nano and bio technologies, molecular level descriptions and understandings offered by statistical mechanics are of increasing interest and importance. This text emphasizes how statistical thermodynamics is and can be used by chemical engineers and physical chemists. The text shows readers the path from molecular level approximations to the applied, macroscopic thermodynamic models engineers use, and introduces them to molecular-level computer simulation. Readers of this book will develop an appreciation for the beauty and utility of statistical mechanics.