An Introduction To Optimization With Applications In Machine Learning And Data Analytics

Download An Introduction To Optimization With Applications In Machine Learning And Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Optimization With Applications In Machine Learning And Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Optimization with Applications in Machine Learning and Data Analytics

The primary goal of this text is a practical one. Equipping students with enough knowledge and creating an independent research platform, the author strives to prepare students for professional careers. Providing students with a marketable skill set requires topics from many areas of optimization. The initial goal of this text is to develop a marketable skill set for mathematics majors as well as for students of engineering, computer science, economics, statistics, and business. Optimization reaches into many different fields. This text provides a balance where one is needed. Mathematics optimization books are often too heavy on theory without enough applications; texts aimed at business students are often strong on applications, but weak on math. The book represents an attempt at overcoming this imbalance for all students taking such a course. The book contains many practical applications but also explains the mathematics behind the techniques, including stating definitions and proving theorems. Optimization techniques are at the heart of the first spam filters, are used in self-driving cars, play a great role in machine learning, and can be used in such places as determining a batting order in a Major League Baseball game. Additionally, optimization has seemingly limitless other applications in business and industry. In short, knowledge of this subject offers an individual both a very marketable skill set for a wealth of jobs as well as useful tools for research in many academic disciplines. Many of the problems rely on using a computer. Microsoft’s Excel is most often used, as this is common in business, but Python and other languages are considered. The consideration of other programming languages permits experienced mathematics and engineering students to use MATLAB® or Mathematica, and the computer science students to write their own programs in Java or Python.
Choosing Chinese Universities

This book unpacks the complex dynamics of Hong Kong students’ choice in pursuing undergraduate education at the universities of Mainland China. Drawing on an empirical study based on interviews with 51 students, this book investigates how macro political/economic factors, institutional influences, parental influence, and students’ personal motivations have shaped students’ eventual choice of university. Building on Perna’s integrated model of college choice and Lee’s push-pull mobility model, this book conceptualizes that students’ border crossing from Hong Kong to Mainland China for higher education is a trans-contextualized negotiated choice under the "One Country, Two Systems" principle. The findings reveal that during the decision-making process, influencing factors have conditioned four archetypes of student choice: Pragmatists, Achievers, Averages, and Underachievers. The book closes by proposing an enhanced integrated model of college choice that encompasses both rational motives and sociological factors, and examines the theoretical significance and practical implications of the qualitative study. With its focus on student choice and experiences of studying in China, this book’s research and policy findings will interest researchers, university administrators, school principals, and teachers.
Machine Learning and Data Science in the Oil and Gas Industry

Author: Patrick Bangert
language: en
Publisher: Gulf Professional Publishing
Release Date: 2021-03-04
Machine Learning and Data Science in the Oil and Gas Industry explains how machine learning can be specifically tailored to oil and gas use cases. Petroleum engineers will learn when to use machine learning, how it is already used in oil and gas operations, and how to manage the data stream moving forward. Practical in its approach, the book explains all aspects of a data science or machine learning project, including the managerial parts of it that are so often the cause for failure. Several real-life case studies round out the book with topics such as predictive maintenance, soft sensing, and forecasting. Viewed as a guide book, this manual will lead a practitioner through the journey of a data science project in the oil and gas industry circumventing the pitfalls and articulating the business value. - Chart an overview of the techniques and tools of machine learning including all the non-technological aspects necessary to be successful - Gain practical understanding of machine learning used in oil and gas operations through contributed case studies - Learn change management skills that will help gain confidence in pursuing the technology - Understand the workflow of a full-scale project and where machine learning benefits (and where it does not)