An Introduction To Operator Polynomials

Download An Introduction To Operator Polynomials PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Operator Polynomials book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Operator Polynomials

Author: L. Rodman
language: en
Publisher: Springer Science & Business Media
Release Date: 1989-07
This book provides an introduction to the modern theory of polynomials whose coefficients are linear bounded operators in a Banach space - operator polynomials. This theory has its roots and applications in partial differential equations, mechanics and linear systems, as well as in modern operator theory and linear algebra. Over the last decade, new advances have been made in the theory of operator polynomials based on the spectral approach. The author, along with other mathematicians, participated in this development, and many of the recent results are reflected in this monograph. It is a pleasure to acknowledge help given to me by many mathematicians. First I would like to thank my teacher and colleague, I. Gohberg, whose guidance has been invaluable. Throughout many years, I have worked wtih several mathematicians on the subject of operator polynomials, and, consequently, their ideas have influenced my view of the subject; these are I. Gohberg, M. A. Kaashoek, L. Lerer, C. V. M. van der Mee, P. Lancaster, K. Clancey, M. Tismenetsky, D. A. Herrero, and A. C. M. Ran. The following mathematicians gave me advice concerning various aspects of the book: I. Gohberg, M. A. Kaashoek, A. C. M. Ran, K. Clancey, J. Rovnyak, H. Langer, P.
An Introduction to Operator Polynomials

This book provides an introduction to the modern theory of polynomials whose coefficients are linear bounded operators in a Banach space - operator polynomials. This theory has its roots and applications in partial differential equations, mechanics and linear systems, as well as in modern operator theory and linear algebra. Over the last decade, new advances have been made in the theory of operator polynomials based on the spectral approach. The author, along with other mathematicians, participated in this development, and many of the recent results are reflected in this monograph. It is a pleasure to acknowledge help given to me by many mathematicians. First I would like to thank my teacher and colleague, I. Gohberg, whose guidance has been invaluable. Throughout many years, I have worked wtih several mathematicians on the subject of operator polynomials, and, consequently, their ideas have influenced my view of the subject; these are I. Gohberg, M. A. Kaashoek, L. Lerer, C. V. M. van der Mee, P. Lancaster, K. Clancey, M. Tismenetsky, D. A. Herrero, and A. C. M. Ran. The following mathematicians gave me advice concerning various aspects of the book: I. Gohberg, M. A. Kaashoek, A. C. M. Ran, K. Clancey, J. Rovnyak, H. Langer, P.
A Polynomial Approach to Linear Algebra

Author: Paul A. Fuhrmann
language: en
Publisher: Springer Science & Business Media
Release Date: 2011-11-23
A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. This new edition has been updated throughout, in particular new sections have been added on rational interpolation, interpolation using H^{\nfty} functions, and tensor products of models. Review from first edition: “...the approach pursed by the author is of unconventional beauty and the material covered by the book is unique.” (Mathematical Reviews)