An Introduction To Mathematical Reasoning

Download An Introduction To Mathematical Reasoning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Mathematical Reasoning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Mathematical Reasoning

Author: Peter J. Eccles
language: en
Publisher: Cambridge University Press
Release Date: 1997-12-11
ÍNDICE: Part I. Mathematical Statements and Proofs: 1. The language of mathematics; 2. Implications; 3. Proofs; 4. Proof by contradiction; 5. The induction principle; Part II. Sets and Functions: 6. The language of set theory; 7. Quantifiers; 8. Functions; 9. Injections, surjections and bijections; Part III. Numbers and Counting: 10. Counting; 11. Properties of finite sets; 12. Counting functions and subsets; 13. Number systems; 14. Counting infinite sets; Part IV. Arithmetic: 15. The division theorem; 16. The Euclidean algorithm; 17. Consequences of the Euclidean algorithm; 18. Linear diophantine equations; Part V. Modular Arithmetic: 19. Congruences of integers; 20. Linear congruences; 21. Congruence classes and the arithmetic of remainders; 22. Partitions and equivalence relations; Part VI. Prime Numbers: 23. The sequence of prime numbers; 24. Congruence modulo a prime; Solutions to exercises.
Introduction to Mathematical Thinking

"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.
Mathematical Reasoning

Focusing on the formal development of mathematics, this book demonstrates how to read and understand, write and construct mathematical proofs. It emphasizes active learning, and uses elementary number theory and congruence arithmetic throughout. Chapter content covers an introduction to writing in mathematics, logical reasoning, constructing proofs, set theory, mathematical induction, functions, equivalence relations, topics in number theory, and topics in set theory. For learners making the transition form calculus to more advanced mathematics.