An Introduction To Hilbert Space And Quantum Logic

Download An Introduction To Hilbert Space And Quantum Logic PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Hilbert Space And Quantum Logic book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Hilbert Space and Quantum Logic

Author: David W. Cohen
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Historically, nonclassical physics developed in three stages. First came a collection of ad hoc assumptions and then a cookbook of equations known as "quantum mechanics". The equations and their philosophical underpinnings were then collected into a model based on the mathematics of Hilbert space. From the Hilbert space model came the abstaction of "quantum logics". This book explores all three stages, but not in historical order. Instead, in an effort to illustrate how physics and abstract mathematics influence each other we hop back and forth between a purely mathematical development of Hilbert space, and a physically motivated definition of a logic, partially linking the two throughout, and then bringing them together at the deepest level in the last two chapters. This book should be accessible to undergraduate and beginning graduate students in both mathematics and physics. The only strict prerequisites are calculus and linear algebra, but the level of mathematical sophistication assumes at least one or two intermediate courses, for example in mathematical analysis or advanced calculus. No background in physics is assumed.
Gleason's Theorem and Its Applications

Author: Anatolij Dvurecenskij
language: en
Publisher: Springer Science & Business Media
Release Date: 1993-01-31
This volume deals with Gleason's theorem and Gleason's measures and indicates the many ways in which they can be applied. The book comprises five chapters. Chapter 1 is devoted to elements of Hilbert space theory. Chapter 2 is devoted to quantum logic theory. Gleason's theorem is described and proved in Chapter 3, together with proofs for measures that can attain infinite values. In Chapter 4 the possibility of applying Gleason's theorem to the completeness criteria of inner product spaces is addressed. Chapter 5 discusses orthogonal measures and the unexpected possibility of describing states on Keller spaces, as well as other applications. Throughout the book, important facts and concepts are illustrated exercises. For mathematicians and physicists interested in the mathematical foundations of quantum mechanics, and those whose work involves noncommutative measure theory, orthomodular lattices. Hilbert space theory and probability theory.
Quantum Logic

Author: Peter Mittelstaedt
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
In 1936, G. Birkhoff and J. v. Neumann published an article with the title The logic of quantum mechanics'. In this paper, the authors demonstrated that in quantum mechanics the most simple observables which correspond to yes-no propositions about a quantum physical system constitute an algebraic structure, the most important proper ties of which are given by an orthocomplemented and quasimodular lattice Lq. Furthermore, this lattice of quantum mechanical proposi tions has, from a formal point of view, many similarities with a Boolean lattice L8 which is known to be the lattice of classical propositional logic. Therefore, one could conjecture that due to the algebraic structure of quantum mechanical observables a logical calculus Q of quantum mechanical propositions is established, which is slightly different from the calculus L of classical propositional logic but which is applicable to all quantum mechanical propositions (C. F. v. Weizsacker, 1955). This calculus has sometimes been called 'quan tum logic'. However, the statement that propositions about quantum physical systems are governed by the laws of quantum logic, which differ from ordinary classical logic and which are based on the empirically well-established quantum theory, is exposed to two serious objec tions: (a) Logic is a theory which deals with those relationships between various propositions that are valid independent of the content of the respective propositions. Thus, the validity of logical relationships is not restricted to a special type of proposition, e. g. to propositions about classical physical systems.