An Introduction To Fuzzy Linear Programming Problems


Download An Introduction To Fuzzy Linear Programming Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Fuzzy Linear Programming Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

An Introduction to Fuzzy Linear Programming Problems


An Introduction to Fuzzy Linear Programming Problems

Author: Jagdeep Kaur

language: en

Publisher: Springer

Release Date: 2016-04-02


DOWNLOAD





The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty.

Fuzzy Mathematical Programming


Fuzzy Mathematical Programming

Author: Young-Jou Lai

language: en

Publisher: Springer Science & Business Media

Release Date: 2012-12-06


DOWNLOAD





In the last 25 years, the fuzzy set theory has been applied in many disciplines such as operations research, management science, control theory,artificial intelligence/expert system, etc. In this volume, methods and applications of fuzzy mathematical programming and possibilistic mathematical programming are first systematically and thoroughly reviewed and classified. This state-of-the-art survey provides readers with a capsule look into the existing methods, and their characteristics and applicability to analysis of fuzzy and possibilistic programming problems. To realize practical fuzzy modelling, we present solutions for real-world problems including production/manufacturing, transportation, assignment, game, environmental management, resource allocation, project investment, banking/finance, and agricultural economics. To improve flexibility and robustness of fuzzy mathematical programming techniques, we also present our expert decision-making support system IFLP which considers and solves all possibilities of a specific domain of (fuzzy) linear programming problems. Basic fuzzy set theories, membership functions, fuzzy decisions, operators and fuzzy arithmetic are introduced with simple numerical examples in aneasy-to-read and easy-to-follow manner. An updated bibliographical listing of 60 books, monographs or conference proceedings, and about 300 selected papers, reports or theses is presented in the end of this study.

Multiobjective Linear Programming


Multiobjective Linear Programming

Author: Dinh The Luc

language: en

Publisher: Springer

Release Date: 2015-07-31


DOWNLOAD





This book introduces the reader to the field of multiobjective optimization through problems with simple structures, namely those in which the objective function and constraints are linear. Fundamental notions as well as state-of-the-art advances are presented in a comprehensive way and illustrated with the help of numerous examples. Three of the most popular methods for solving multiobjective linear problems are explained, and exercises are provided at the end of each chapter, helping students to grasp and apply key concepts and methods to more complex problems. The book was motivated by the fact that the majority of the practical problems we encounter in management science, engineering or operations research involve conflicting criteria and therefore it is more convenient to formulate them as multicriteria optimization models, the solution concepts and methods of which cannot be treated using traditional mathematical programming approaches.