An Introduction To Differential Geometry


Download An Introduction To Differential Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Differential Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

An Introduction to Differential Geometry


An Introduction to Differential Geometry

Author: T. J. Willmore

language: en

Publisher: Courier Corporation

Release Date: 2012-01-01


DOWNLOAD





A solid introduction to the methods of differential geometry and tensor calculus, this volume is suitable for advanced undergraduate and graduate students of mathematics, physics, and engineering. Rather than a comprehensive account, it offers an introduction to the essential ideas and methods of differential geometry. Part 1 begins by employing vector methods to explore the classical theory of curves and surfaces. An introduction to the differential geometry of surfaces in the large provides students with ideas and techniques involved in global research. Part 2 introduces the concept of a tensor, first in algebra, then in calculus. It covers the basic theory of the absolute calculus and the fundamentals of Riemannian geometry. Worked examples and exercises appear throughout the text.

Introduction to Differential Geometry


Introduction to Differential Geometry

Author: Joel W. Robbin

language: en

Publisher: Springer Nature

Release Date: 2022-01-12


DOWNLOAD





This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.

Introduction to Differential Geometry for Engineers


Introduction to Differential Geometry for Engineers

Author: Brian F. Doolin

language: en

Publisher: Courier Corporation

Release Date: 2013-05-13


DOWNLOAD





This outstanding guide supplies important mathematical tools for diverse engineering applications, offering engineers the basic concepts and terminology of modern global differential geometry. Suitable for independent study as well as a supplementary text for advanced undergraduate and graduate courses, this volume also constitutes a valuable reference for control, systems, aeronautical, electrical, and mechanical engineers.The treatment's ideas are applied mainly as an introduction to the Lie theory of differential equations and to examine the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, vector fields, exterior algebra, and Lie algebras. An appendix reviews concepts related to vector calculus, including open and closed sets, compactness, continuity, and derivative.