An Introduction To Compactness Results In Symplectic Field Theory

Download An Introduction To Compactness Results In Symplectic Field Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get An Introduction To Compactness Results In Symplectic Field Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
An Introduction to Compactness Results in Symplectic Field Theory

Author: Casim Abbas
language: en
Publisher: Springer Science & Business Media
Release Date: 2014-01-07
This book provides an introduction to symplectic field theory, a new and important subject which is currently being developed. The starting point of this theory are compactness results for holomorphic curves established in the last decade. The author presents a systematic introduction providing a lot of background material, much of which is scattered throughout the literature. Since the content grew out of lectures given by the author, the main aim is to provide an entry point into symplectic field theory for non-specialists and for graduate students. Extensions of certain compactness results, which are believed to be true by the specialists but have not yet been published in the literature in detail, top off the scope of this monograph.
New Perspectives and Challenges in Symplectic Field Theory

This volume, in honor of Yakov Eliashberg, gives a panorama of some of the most fascinating recent developments in symplectic, contact and gauge theories. It contains research papers aimed at experts, as well as a series of skillfully written surveys accessible for a broad geometrically oriented readership from the graduate level onwards. This collection will serve as an enduring source of information and ideas for those who want to enter this exciting area as well as for experts.
Bordered Heegaard Floer Homology

Author: Robert Lipshitz
language: en
Publisher: American Mathematical Soc.
Release Date: 2018-08-09
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.